SEARCH

SEARCH BY CITATION

References

  • Barry, D. A., and G. C. Sander, Exact solutions for water infiltration with an arbitrary surface flux or nonlinear solute adsorption, Water Resour. Res., 27, 26672680, 1991.
  • Barry, D. A., I. G. Lisle, L. Li, H. Prommer, J.-Y. Parlange, G. C. Sander, and J. W. Griffioen, Similitude applied to centrifugal scaling of unsaturated flow, Water Resour. Res., 37, 24712479, 2001.
  • Broadbridge, P., and I. White, Constant rate rainfall infiltration—A versatile nonlinear model, 1, Analytic solution, Water Resour. Res., 24, 145154, 1988.
  • Broadbridge, P., J. H. Knight, and C. Rogers, Constant rate rainfall infiltration in a bounded profile—Solutions of a nonlinear model, Soil Sci. Soc. Am. J., 52, 15261533, 1988.
  • Clothier, B. E., J. H. Knight, and I. White, Burgers' equation: Application to field constant-flux infiltration, Soil Sci., 132, 255261, 1981.
  • Cole, J. D., On a quasi-linear parabolic equation occurring in aerodynamics, Q. Appl. Math., 9, 225236, 1951.
  • Fokas, A. S., and Y. C. Yortsos, On the exactly solvable equation St = [(βS + γ)−2Sx]x + α(βS + γ−2)Sx ocurring in two-phase flow in porous media, SIAM J. Appl. Math., 42, 318322, 1982.
  • Fujita, H., The exact pattern of a concentration-dependent diffusion in a semi-infinite medium, II, Textile Res. J., 22, 823827, 1952.
  • Hopf, E., The partial differential equation ut + uux = μux, Comm. Pure Appl. Math., 3, 201230, 1950.
  • Kühnel, V., J. C. I. Dooge, G. C. Sander, and J. P. J. O'Kane, Duration of atmosphere-controlled and of soil-controlled phases of infiltration for constant rainfall at a soil surface, Ann. Geophys., 18, 1120, 1990.
  • LaBolle, E. M., and V. Clausnitzer, Comment on Russo [1991], Serrano [1990, 1998], and other applications of the water-content-based form of Richards' equation to heterogeneous soils, Water Resour. Res., 35, 605607, 1999.
  • Lisle, I. G., Equivalence Transformations for Classes of Differential Equations, Ph.D. thesis, Dept. of Math., Univ. of British Columbia, Vancouver, Canada, 1992.
  • Miller, E. E., Similitude and scaling of soil-water phenomena, in Applications of Soil Physics, edited by D. Hillel, pp. 300318, Academic, San Diego, Calif., 1980.
  • Miller, E. E., and R. D. Miller, Theory of capillary flow, I, Practical implications, Soil Sci. Soc. Am. Proc., 19, 267271, 1955a.
  • Miller, E. E., and R. D. Miller, Theory of capillary flow, II, Experimental information, Soil Sci. Soc. Am. Proc., 19, 271275, 1955b.
  • Miller, E. E., and R. D. Miller, Physical theory for capillary flow phenomena, J. Appl. Physics, 27, 324332, 1956.
  • Parkin, G. W., D. E. Elrick, and R. G. Kachanoski, Cumulative storage of water under constant flux infiltration: Analytical solution, Water Resour. Res., 28, 28112818, 1992.
  • Parkin, G. W., A. W. Warrick, D. E. Elrick, and R. G. Kachanoski, Analytical solution for one-dimensional drainage, Water stored in a fixed depth, Water Resour. Res., 31, 12671271, 1995.
  • Pearson, C. E., Partial differential equations of second and higher order, in Handbook of Applied Mathematics, Selected Results and Methods, 2nd ed., edited by C. E. Pearson, pp. 448511, Van Nostrand Reinhold, New York, 1990a.
  • Pearson, H. L.. Elements of analysis, in Handbook of Applied Mathematics, Selected Results and Methods, 2nd edition, edited by C. E. Pearson, pp. 83128, Van Nostrand Reinhold, New York, 1990b.
  • Richards, L. A., Capillary conduction of liquids through porous mediums, Physics, 1, 318333, 1931.
  • Rogers, C., On a nonlinear moving boundary problem with heterogeneity: Application of a reciprocal transformation, ZAMP, 39, 122128, 1988.
  • Rogers, C., M. P. Stallybrass, and D. L. Clements, On two phase flow filtration under gravity and with boundary infiltration: Application of a Bäcklund transformation, Nonlinear Anal. Theory Meth. Appl., 7, 785799, 1983.
  • Rosen, G., Method of the exact solution of a nonlinear diffusion-convection equation, Phys. Rev. Lett., 49, 18441846, 1982.
  • Sander, G. C., Exact solutions to nonlinear diffusion-convection problems on finite domains, J. Austral. Math. Soc., Ser. B, 33, 384401, 1992.
  • Sander, G. C., J.-Y. Parlange, V. Kühnel, W. L. Hogarth, D. Lockington, and J. P. J. O'Kane, Exact nonlinear solution for constant flux infiltration, J. Hydrol., 97, 341346, 1988a.
  • Sander, G. C., J.-Y. Parlange, V. Kühnel, W. L. Hogarth, and J. P. J. O'Kane, Comment on “Constant rate rainfall infiltration: A versatile nonlinear model, 1, Analytic solution” by P. Broadbridge and I. White, Water Resour. Res., 24, 21072108, 1988b.
  • Sander, G. C., I. F. Cunning, W. L. Hogarth, and J.-Y. Parlange, Exact solution for nonlinear, nonhysteretic redistribution in vertical soil of finite depth, Water Resour. Res., 27, 15291536, 1991.
  • Sophocleous, C., Potential symmetries of nonlinear diffusion-convection equations, J. Phys. A Math. Gen., 29, 69516959, 1996.
  • van Genuchten, M. T., and W. J. Alves. Analytical solutions of the one-dimensional convective-dispersive solute transport equation, Tech. Bull. 1661, U. S. Dept. of Agric., Washington, D. C., 1982.
  • Vijayakumar, K., Isogroup classification and group-invariant solutions of the nonlinear diffusion-convection equation Tt = (D1(T)Tx)x − (T)Tx, Int. J. Eng. Sci., 35, 114, 1997.
  • Warrick, A. W., D. O. Lomen, and A. Islas, An analytical solution to Richards' equation for a draining soil profile, Water Resour. Res., 26, 253258, 1990.
  • Warrick, A. W., A. Islas, and D. O. Lomen, An analytical solution to Richards' equation for time-varying infiltration, Water Resour. Res., 27, 763766, 1991.
  • Yung, C. M., K. Verberg, and P. Baveye, Group classification and symmetry reductions of the non-linear diffusion-convection equation ut = (D(u)ux)xK′(u)ux, Int. J. Non-Lin. Mech., 29, 273278, 1994.