SEARCH

SEARCH BY CITATION

References

  • Akaike, H., Statistical predictor identification, Ann. Inst. Stat. Math., 22, 203217, 1970.
  • Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom. Control, 19, 716723, 1974.
  • Akaike, H., A Bayesian extension of the AIC procedure, Biometrika, 66, 237242, 1979.
  • Bierkens, M. F. P., M. Knotters, and F. C. Van Geer, Calibration of transfer function-noise models to sparsely or irregularly observed time series, Water Resour. Res., 32, 17411750, 1999.
  • Box, G. E. P., and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, Boca Raton, Fla., 1970.
  • Chatfield, C., The Analysis of Time Series: An Introduction, Chapman and Hall, New York, 1989.
  • De Gooijer, J. G., B. Abraham, A. Gould, and L. Robinson, Methods for determining the order of an autoregressive-moving average process: A survey, Int. Stat. Rev., 53(3), 301329, 1985.
  • Dooge, J. C. I., Linear theory of hydrologic systems, U.S. Dep. Agric. Agric. Res. Serv. Tech., 1468, 1973.
  • Gardiner, C. W., Handbook of Stochastic Methods, Springer-Verlag, New York, 1994.
  • Gehrels, J. C., F. C. Van Geer, and J. J. De Vries, Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones, J. Hydrol., 157, 105138, 1994.
  • Hipel, K. W., and A. I. McLeod, Time Series Modelling of Water Resources and Environmental Systems, Elsevier Sci., New York, 1994.
  • Journel, A. G., and C. Huijbregts, Mining Geostatistics, Academic, San Diego, Calif., 1978.
  • Jury, W. A., and K. Roth, Transfer Functions and Solute Movement Through Soil, Theory and Applications, Birkhäuser Boston, Cambridge, Mass., 1990.
  • Knotters, M., Regionalised time series models for water table depths, Ph.D. thesis, Wageningen Univ., Wageningen, Netherlands, 2001.
  • Knotters, M., and M. F. P. Bierkens, Physical basis of time series models for water table depths, Water Resour. Res., 36(1), 181188, 2000.
  • Koutsoyiannis, D., Coupling stochastic models of different timescales, Water Resour. Res., 37(2), 379391, 2001.
  • Ljung, L., System Identification, Theory for the User, Prentice-Hall, Old Tappan, N. J., 1999.
  • Maas, C., On convolutional processes and dispersive groundwater flow, Ph.D. thesis, Delft Univ. of Technol., Delft, Netherlands, 1994.
  • Nash, J. E., Determining runoff from rainfall, Proc. Inst. Civ. Eng., 10, 163184, 1958.
  • Price, L. E., P. Goodwill, P. C. Young, and J. S. Rowan, A data-based mechanistic modelling (DBM) approach to understanding dynamic sediment transmission through Wyresdale Park Reservoir Lancashire, UK, Hydrol. Processes, 14, 6378, 2000.
  • Quimpo, R. G., Structural relation between parametric and stochastic hydrology models, IAHS Publ., 100, 151157, 1971.
  • Rolf, H. L. M., and J. J. Lebbink, Hydrologische effecten als gevolg van de reductie van de duinwaterwinning in het Noord-Hollands Duinreservaat, Provinciaal Waterleidingbedrijf Noord-Holland, Heemskerk, Netherlands, 1998.
  • Schweppe, F. C., Uncertain Dynamic Systems, Prentice-Hall, Old Tappan, N. J., 1973.
  • Shibata, R., Selection of the order of an autoregressive model by Akaike's information criterion, Biometrika, 63, 117126, 1976.
  • Tankersley, C. D., W. D. Graham, and K. Hatfield, Comparison of univariate and transfer function models of groundwater fluctuations, Water Resour. Res., 29(10), 35173533, 1993.
  • Uhlenbeck, G. E., and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev., 36, 823841, 1930.
  • Van Geer, F. C., and A. F. Zuur, An extension of Box-Jenkins transfer/noise models for spatial interpolation of groundwater head series, J. Hydrol., 192, 6580, 1997.
  • Young, P. C., and K. J. Beven, Data based mechanistic (DBM) modelling and the rainfall-flow non-linearity, Environmetrics, 5, 335365, 1994.
  • Ziemer, R. E., W. H. Tranter, and D. R. Fannin, Signals and Systems, Continuous and Discrete, Prentice-Hall, Old Tappan, N. J., 1998.