SEARCH

SEARCH BY CITATION

References

  • Andersen, K. K., A. Armengaud, and C. Genthon, Atmospheric dust under glacial and interglacial conditions, Geophys. Res. Lett., 25, 22812284, 1998.
  • Antia, A. N., et al., Basin-wide particulate carbon flux in the Atlantic Ocean: Regional export patterns and potential for atmospheric CO2 sequestration, Global Biogeochem. Cycles, 15, 845862, 2001.
  • Antia, N. J., A microbiological assay for biotin in seawater, Can. J. Microbiol., 9(3), 403, 1963.
  • Archer, D., and E. Maier-Reimer, Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration, Nature, 367, 260263, 1994.
  • Archer, D., M. Lyle, K. Rodgers, and P. Froelich, What controls opal preservation in tropical deep-sea sediments? Paleoceanography, 8, 721, 1993.
  • Aumont, O., J. C. Orr, P. Monfray, G. Madec, and E. Maier-Reimer, Nutrient trapping in the equatorial Pacific: The ocean circulation solution, Global Biogeochem. Cycles, 13, 351369, 1999.
  • Bainbridge, A. E., GEOSECS Atlantic Expedition, vol. 1, Hydrographic Data 1972–1973, 121 pp., Natl. Sci. Found., Washington, D. C., 1981.
  • Behrenfeld, M. J., and P. G. Falkowski, Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 120, 1997.
  • Berelson, W. M., et al., Biogenic budgets of particle rain, benthic remineralization and sediment accumulation in the equatorial Pacific, Deep Sea Res., 44(9–10), 22512280, 1997.
  • Berger, W. H., K. Fischer, C. Lai, and G. Wu, Ocean productivity and organic carbon flux: I. Overview and maps of primary production and export production, SIO Ref. 87-30, 45 pp., Scripps Inst. of Oceanogr., Univ. of Calif., San Diego, La Jolla, 1987.
  • Berner, R. A., Early Diagenesis: A Theoretical Approach, Princeton Univ. Press, Princeton, N. J., 1980.
  • Broecker, W. S., and T.-H. Peng, Carbon cycle: 1985-Glacial to interglacial changes in the operation of the global carbon cycle, Radiocarbon, 28, 309327, 1986.
  • Broecker, W. S., S. Sutherland, W. Smethie, T.-H. Peng, and G. Östlund, Oceanic radiocarbon: Separation of the natural and bomb components, Global Biogeochem. Cycles, 9, 263288, 1995.
  • Brzezinski, M. A., The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables, J. Phycol., 21, 347357, 1985.
  • Buesseler, K. O., The decoupling of production and particulate export in the surface ocean, Global Biogeochem. Cycles, 12, 297310, 1998.
  • Craig, H., W. S. Broecker, and D. Spencer, GEOSECS Pacific Expedition, vol. 4, Sections and Profiles, 251 pp., Natl. Sci. Found., Washington, D. C., 1981.
  • DeMaster, D. J., The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Acta, 45, 17151732, 1981.
  • DeMaster, D. J., The accumulation and cycling of biogenic silica in the Southern Ocean: Revisiting the marine silica budget, Deep Sea Res., Part II, 49, 31553167, 2002.
  • DeMaster, D. J., R. B. Dunbar, L. I. Gordon, A. R. Leventer, J. M. Morrison, D. M. Nelson, C. A. Nittrouer, and W. O. Smith Jr., Cycling and accumulation of biogenic silica and organic matter in high latitude environments: The Ross Sea, Oceanography, 5, 146153, 1992.
  • DeMaster, D. J., W. O. Smith Jr., D. M. Nelson, and J. Y. Aller, Biogeochemical processes in Amazon shelf waters: Chemical distributions and uptake rates of silicon, carbon and nitrogen, Cont. Shelf Res., 16, 617643, 1996a.
  • DeMaster, D. J., O. Ragueneau, and C. A. Nittrouer, Preservation efficiencies and accumulation rates for biogenic silica and C, N and P in high-latitude sediments: The Ross sea, J. Geophys. Res., 101, 18,50118,518, 1996b.
  • Dittert, N., M. Diepenbroek, and H. Grobe, Scientific data must be made available to all, Nature, 414, 393, 2001.
  • Dittert, N., M. Diepenbroek, C. Heinze, and O. Ragueneau, Managing (pale-)oceanographic data sets using the PANGAEA information system: The SINOPS example, Comput. Geosci., 28, 789798, 2002.
  • Dixit, S., P. Van Cappellen, and A. J. van Bennekom, Processes controlling solubility of biogenic silica and porewater build-up of silicic acid in marine sediments, Mar. Chem., 73, 333352, 2001.
  • Dugdale, R. C., and F. P. Wilkerson, Silicate regulation of new production in the eastern equatorial Pacific, Nature, 391, 270273, 1998.
  • Dugdale, R. C., F. P. Wilkerson, and H. J. Minas, The role of a silicate pump in driving new production, Deep Sea Res., 42, 697719, 1995.
  • Dymond, J., and M. Lyle, Particle fluxes in the ocean and omplications for sources and prervation of ocean sediments, in Material Fluxes on the Surface of the Earth, pp. 125142, Natl. Acad., Washington, D. C., 1994.
  • Edmond, J. M., and J. M. T. M. Gieskes, On the calculation of the degree of saturation of seawater with respect to calcium carbonate under in situ conditions, Geochim. Cosmochim. Acta, 34, 12611291, 1970.
  • Gallinari, M., O. Ragueneau, L. Corrin, D. J. DeMaster, and P. Tréguer, The importance of water column processes on the dissolution properties of biogenic silica in deep sea sediments: I. Solubility, Geochim. Cosmochi. Acta, 66, 27072717, 2002.
  • Gehlen, M., C. Heinze, E. Maier-Reimer, and C. I. Measures, Coupled Al-Si geochemistry in an ocean general circulation model: A tool for the validation of oceanic dust deposition? Global Biogeochem. Cycles, 17, 1028, doi: 2001GB001549, 2003.
  • Geider, R. J., and J. LaRoche, The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea, Photosynth. Res., 39, 275301, 1994.
  • Gent, P., J. Willebrand, T. J. McDougall, and J. C. McWilliams, Parameterising eddy induced transports in in ocean circulation models, J. Phys. Oceanogr., 25, 463474, 1995.
  • Gnanadesikan, A., A global model of silicon cycling: Sensitivity to eddy parameterization and dissolution, Global Biogeochem. Cycles, 13, 199220, 1999.
  • Goering, J. J., D. M. Nelson, and J. A. Carter, Silicic uptake by natural populations of marine phytoplankton, Deep Sea Res., 20, 777789, 1973.
  • Grill, E. V., and F. A. Richards, Nutrient regeneration from phytoplankton decomposing in seawater, J. Mar. Res., 22(1), 5169, 1964.
  • Heinze, C., Towards the time-dependent modeling of sediment core data on a global basis, Geophys. Res. Lett., 28, 42114214, 2001.
  • Heinze, C., Assessing the importance of the Southern Ocean for natural atmospheric pCO2 variations with a global biogeochemical general circulation model, Deep Sea Res., Part II, 49, 31053125, 2002a.
  • Heinze, C., Das Marine Sediment als Klimazeuge und Komponente des Klimasystems-Eine Modellstudie, Forschung und Wissen Ser., 124 pp., GCA-Verlag, Herdecke, Germany, 2002b.
  • Heinze, C., and E. Maier-Reimer, The Hamburg Oceanic Carbon Cycle Circulation Model Version “HAMOCC2s” for long time integrations, Tech. Rep. 20, 71 pp., Deutsches Klimarechenzentrum, Hamburg, Germany, 1999.
  • Heinze, C., E. Maier-Reimer, and K. Winn, Glacial pCO2 reduction by the world ocean: Experiments with the Hamburg carbon cycle model, Paleoceanography, 6, 395430, 1991.
  • Heinze, C., E. Maier-Reimer, and P. Schlosser, Transient tracers in a global OGCM: Source functions and simulated distributions, J. Geophys. Res., 103, 15,90315,922, 1998.
  • Heinze, C., E. Maier-Reimer, A. M. E. Winguth, and D. Archer, A global oceanic sediment model for longterm climate studies, Global Biogeochem. Cycles, 13, 221250, 1999.
  • Henderson, G. M., C. Heinze, R. F. Anderson, and A. M. E. Winguth, Global distribution of the 230Th flux to ocean sediments constrained by GCM modelling, Deep Sea Res., Part I, 46, 18611893, 1999.
  • Hofmann, M., D. A. Wolf-Gladrow, T. Takahashi, S. C. Sutherland, K. D. Six, and E. Maier-Reimer, Stable carbon isotope distribution of particulate organic matter in the ocean: A model study, Mar. Chem., 72, 131150, 2000.
  • Honjo, S., J. Dymond, R. Collier, and S. J. Manganini, Export production of particles to the interior of equatorial Pacific Ocean during 1992 EqPaq experiment, Deep Sea Res., Part II, 42, 831870, 1995.
  • Ingle, S. E., Solubility of calcite in the ocean, Mar. Chem., 3, 301319, 1975.
  • Kamatani, A., Regeneration of inorganic nutrients from diatom decomposition, J. Oceanogr. Soc. Jpn., 25, 6374, 1969.
  • Koning, E., G.-J. Brummer, W. Van Raaphorst, A. J. Van Bennekom, W. Helder, and J. Van Yperen, Settling, dissolution and burial of biogenic silica in the sediments off Somalia (northwestern Indian Ocean), Deep Sea Res., Part II, 44, 13411360, 1997.
  • Kriest, I., and G. T. Evans, Representing phytoplankton aggregates in biogeochemical models, Deep Sea Res., Part I, 46, 18411859, 1999.
  • Lanczos, C., Linear Differential Operators, Van Nostrand Reinhold, New York, 1961.
  • Lawson, D. S., D. C. Hurd, and H. S. Pankratz, Silica dissolution rates of decomposing phytiplankton assemblages at various temperatures, Am. J. Sci., 278, 13731393, 1978.
  • Levitus, S., Climatological atlas of the world ocean, Prof. Pap. 13, Natl. Oceanic and Atmos. Admin., Silver Spring, Md., 1982.
  • Li, Y.-H., and S. Gregory, Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Acta, 38, 703714, 1974.
  • Lorenz, S., B. Grieger, P. Helbig, and K. Herterich, Investigating the sensitivity of the Atmospheric General Circulation Model ECHAM 3 to paleoclimatic boundary conditions, Geol. Rundschau, 85, 513524, 1996.
  • Mahowald, N., K. Kohfeld, M. Hansson, Y. Balkanski, S. P. Harison, I. C. Prentice, M. Schulz, and H. Rodhe, Dust sources and deposition during the Last Glacial Maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments, J. Geophys. Res., 104, 15,89515,916, 1999.
  • Maier-Reimer, E., Geochemical cycles in an ocean general circulation model: Preindustrial tracer distributions, Global Biogeochem. Cycles, 7, 645677, 1993.
  • Maier-Reimer, E., U. Mikolajewicz, and K. Hasselmann, Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing, J. Phys. Oceanogr., 23, 731757, 1993.
  • Martin, J. H., G. A. Knauer, D. M. Karl, and W. W. Broenkow, VERTEX: Carbon cycling in the northeast Pacific, Deep Sea Res., 34, 267285, 1987.
  • McManus, J. E., D. E. Hammond, W. M. Berelson, T. E. Kilgore, D. J. DeMaster, O. G. Ragueneau, and R. W. Collier, Early diagenesis of biogenic opal: Dissolution rates, kinetics, and paleoceanographic implications, Deep Sea Res. Part II, 42, 871903, 1995.
  • Michalopoulos, P., and R. C. Aller, Rapid clay mineral formation in Amazon Delta sediments: Reverse weathering and oceanic elemental fluxes, Science, 270, 614617, 1995.
  • Najjar, R. G., J. L. Sarmiento, and J. R. Toggweiler, Downward transport and fate organic matter in the ocean: Simulations with a general circulation model, Global Biogeochem. Cycles, 6, 4576, 1992.
  • Nelson, D. M., P. Tréguer, M. A. Brzezinski, A. Leynaert, and B. Quéguiner, Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship with biogenic sedimentation, Global Biogeochem. Cycles, 9, 359372, 1995.
  • Orr, J., Global Ocean Storage of Anthropogenic Carbon (GOSAC), EC Environ. and Clim. Programme final report, 116 p., Inst. Pierre Simon Laplace/CNRS, Guyancourt, France, 2001. (Available at http://www.ipsl.jussieu.fr/OCMIP/reports).
  • Paasche, E., Silicon and the ecology of Marine plankton diatoms: I. Thalassiosira pseudonana (Cyclotella nana) growth in a chemostat with silicate as limiting nutrient, Mar. Biol., 19, 117126, 1973.
  • Parsons, T. R., and M. Takahashi, Biological Oceanographic Processes, 186 pp., Pergamon, New York, 1973.
  • Pondaven, P., O. Ragueneau, P. Tréguer, A. Hauvespre, L. Dezileau, and J. L. Reyss, Resolving the “opal paradox” in the Southern Ocean, Nature, 405, 168172, 2000.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd ed., 963 pp., Cambridge Univ. Press, New York, 1992.
  • Rabouille, C., J.-F. Gaillard, P. Tréguer, and M.-A. Vincendeau, Biogenic silica recycling in surficial sediments across the Polar Front Zone of the Southern Ocean (Indian Sector), Deep Sea Res., Part II, 44, 11511176, 1997.
  • Ragueneau, O., A. Leynaert, P. Tréguer, D. J. DeMaster, and R. F. Anderson, Opal studied as a marker of paleoproductivity, Eos Trans. AGU, 77(49), 491493, 1996.
  • Ragueneau, O., et al., A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global Planet. Change, 26, 317365, 2000.
  • Ragueneau, O., et al., The benthic silica cycle in the Northeast Atlantic: annual mass balance, seasonality, and importance of non-steady state processes for the early diagenesis of biogenic opal in deep-sea sediments, Prog. Oceanogr., 50, 171200, 2001.
  • Rickert, D., Dissolution kinetics of biogenic silica in marine environments, Ber. Polarforschung., 351, 211 pp., Alfred-Wegener-Inst. für Polar- und Meeresforschung, Bremerhaven, Germany, 2000.
  • Sayles, F. L., W. G. Deuser, J. E. Goudreau, W. H. Dickinson, T. D. Jickells, and P. King, The benthic cycle of biogenic opal at the Bermuda Atlantic Time Series site, Deep Sea Res., Part I, 43, 383409, 1996.
  • Schneider, R. R., P. J. Müller, and M. Zabel, Biogenic opal in the eastern south Atlantic: patterns of surface water productivity, sedimentary accumulation and bethic Si(OH)4 fluxes in relation to oceanic and fluvial nutrient supply, in OPALEO: On the Use of Opal as a Paleo-Productivity Proxy: Minutes of the First Workshop, edited by O. Ragueneau, A. Leynaert, and P. Tréguer, pp. 98103, Inst. Univ. Eur. de la Mer, Univ. de Bretagne Occidentale, Brest, France, 1996.
  • Scholten, J. C., J. Fietzke, S. Vogler, M. M. Rutgers van der Loeff, A. Mangini, W. Koeve, J. Waniek, P. Stoffers, A. Antia, and J. Kuss, Trapping efficiencies of sediment traps from the deep Eastern North Atlantic: The 230Th calibration, Deep Sea Res., Part II, 48, 23832408, 2001.
  • Suess, E., Particulate organic carbon flux in the oceans-Surface productivity and oxygen utilization, Nature, 288, 260263, 1980.
  • Six, K., and E. Maier-Reimer, Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model, Global Biogeochem. Cycles, 10, 559583, 1996.
  • Spencer, C. P., Marien biogeochemistry of silicon, in Silicon Geochemistry and Biogeochemistry, edited by S. R. Aston, pp. 101141, Academic, San Diego, Calif., 1983.
  • Thomas, W. H., and A. N. Dodson, Effects of phosphate concentration on cell division rates and yield of a tropical oceanic diatom, Biol. Bull., 134(1), 199208, 1968.
  • Tréguer, P., D. M. Nelson, A. J. Van Bennekom, D. J. DeMaster, A. Leynaert, and B. Quéguiner, The balance of silica in the world ocean: A re-estimate, Science, 268, 375379, 1995.
  • Ullman, W. J., and R. C. Aller, Diffusion coefficients in nearshore marine environments, Limnol. Oceanogr., 27, 552556, 1982.
  • Usbeck, R., Modeling of marine biogeochemical cycles with an emphasis on vertical particle fluxes, Ber. Polarforschung, 332, 105 pp., 1999.
  • Van Bennekom, A. J., G. W. Berger, S. J. van der Gaast, and R. T. P. de Vries, Primary productivity and the silica cycle in the Southern Ocean (Atlantic sector), Paleogeogr. Paleoclimatol. Paleoecol., 67, 1930, 1988.
  • Van Cappellen, P., and L. Qiu, Biogenic silica dissolution in sediments of the Southern Ocean: I. Solubility, Deep Sea Res., Part II, 44, 11091128, 1997.
  • Volk, T., and M. Hoffert, Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven pCO2 changes, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 99110, AGU, Washington, D. C., 1985.
  • Winguth, A. M. E., D. Archer, J.-C. Duplessy, E. Maier-Reimer, and U. Mikolajewicz, Sensitivity of paleonutrient tracer distributions and deep sea circulation to glacial boundary conditions, Paleoceanography, 14, 304323, 1999.
  • Woodruff, S. D., R. J. Slurz, R. L. Jenne, and P. M. Steurer, A comprehensive ocean-atmosphere data set, Bull. Am. Meteorol. Soc., 68, 12391250, 1987.
  • Wunsch, C., Tracer inverse problems, in Oceanic Circulation Models: Combinig Data and Dynamics, edited by D. L. T. Anderson, and J. Willebrand, pp. 177, Kluwer Acad., Norwell, Mass., 1989.
  • Yu, E.-F., R. Francois, M. P. Bacon, S. Honjo, A. P. Fleer, S. J. Manganini, M. M. Rutgers van der Loeff, and V. Ittekot, Trapping efficiency of bottom-tethered sediment traps estimated from the intercepted fluxes of 230Th and 231Pa, Deep Sea Res., Part I, 48, 865889, 2001.