SEARCH

SEARCH BY CITATION

References

  • Alt, J. C., Subseafloor processes in mid-ocean ridge hydrothermal systems, in Seafloor Hydrothermal Systems, Physical, Chemical, Biological, and Geological Interactions, Geophys. Monogr. Ser., vol. 91, edited by S. E. Humphris et al., pp. 85114, AGU, Washington, D.C., 1995.
  • Alt, J. C., Very low-grade hydrothermal metamorphism of basic igneous rocks, in Low-Grade Metamorphism, edited by M. Frey, and D. Robinson, pp. 85114, Blackwell Sci., Malden, Mass., 1999.
  • Alt, J. C., and J. Honnorez, Alteration of the upper oceanic crust, Deep Sea Drilling Project Site 417: Mineralogy and chemistry, Contrib. Mineral. Petrol., 87, 149169, 1984.
  • Alt, J. C., and D. A. H. Teagle, The uptake of carbon during alteration of ocean crust, Geochim. Cosmochim. Acta, 63, 15271535, 1999.
  • Alt, J. C., and D. A. H. Teagle, Hydrothermal alteration and fluid fluxes in ophiolites and ocean crust, in Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program, edited by Y. Dilek et al., Geol. Soc. Am. Spec. Pap., 349, 273282, 2000.
  • Alt, J. C., C. Laverne, and K. Muehlenbachs, Alteration of the upper oceanic crust: Mineralogy and processes in DSDP Hole 504B, Leg 83, Initial Rep. Deep Sea Drill. Proj., 83, 217247, 1985.
  • Alt, J. C., J. Honnorez, C. Laverne, and R. Emmermann, Hydrothermal alteration of a 1-km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater-basalt interactions, J. Geophys. Res., 91, 10,30910,335, 1986.
  • Alt, J. C., C. France-Lanord, P. A. Floyd, P. Castillo, and A. Galy, Low-temperature hydrothermal alteration of Jurassic ocean crust, Site 801, Proc. Ocean Drill. Program Sci. Results, 129, 415427, 1992.
  • Alt, J. C., D. A. H. Teagle, C. Laverne, D. Vanko, W. Bach, J. Honnorez, K. Becker, M. Ayadi, and P. A. Pezard, Ridge flank alteration of upper ocean crust in the eastern Pacific: A synthesis of results for volcanic rocks of Holes 504B and 896A, Proc. Ocean Drill. Program Sci. Results, 148, 435452, 1996a.
  • Alt, J. C., et al., Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: a synthesis of results from Site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140, and 148), Proc. Ocean Drill. Program Sci. Results, 148, 417434, 1996b.
  • Anderson, R. N., and M. D. Zoback, Permeability, underpressures and convection in the oceanic crust near the Costa Rica Rift, eastern equatorial Pacific, J. Geophys. Res., 87, 28602868, 1982.
  • Anderson, R. N., S. Uyeda, and A. Miyashiro, Geophysical and geochemical constraints at converging plate boundaries; Part I. dehydration in the downgoing slab, Geophys. J. R. Astron. Soc., 44, 333357, 1976.
  • Anderson, R. N., M. G. Langseth, and J. G. Sclater, The mechanisms of heat transfer through the floor of the Indian Ocean, J. Geophys. Res., 82, 33913409, 1977.
  • Anderson, R. N., S. E. DeLong, and W. M. Schwarz, Dehydration, asthenospheric convection, and seismicity in subduction zones, J. Geol., 88, 445451, 1980.
  • Andrews, A. J., Saponite and celadonite in layer 2 basalts, DSDP Leg 37, Contrib. Mineral. Petrol., 73, 323340, 1980.
  • Armstrong, R. L., A model for the evolution of strontium and lead isotopes in a dynamic Earth, Rev. Geophys., 6, 175199, 1968.
  • Armstrong, R. L., The persistent myth of crustal growth, Aust. J. Earth Sci., 38, 613630, 1991.
  • Arzate, A. J., M. Mareschal, and D. Livelybrooks, Electrical image of the subducting Cocos Plate from magnetotelluric observations, Geology, 23, 703706, 1995.
  • Azbel, I. Y., and I. N. Tolstikhin, Geodynamics, magmatism, and degassing of the Earth, Geochim. Cosmochim. Acta, 54, 139154, 1990.
  • Bach, W., J. C. Alt, Y. Niu, S. E. Humphris, J. Erzinger, and H. J. B. Dick, The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176), Geochim. Cosmochim. Acta, 65, 32673287, 2001.
  • Bach, W., S. E. Humphris, and A. T. Fisher, Fluid flow and fluid-rock interaction within ocean crust: reconciling geochemical, geological, and geophysical observations, in Subsurface Biosphere at Mid-Ocean Ridges, Geophys. Monogr. Ser., edited by W. Wilcock et al., AGU, Washington, D.C., in press, 2003.
  • Bebout, G. E., Geometry and mechanisms of fluid flow at 15 to 45 kilometer depths in an Early Cretaceous accretionary complex, Geophys. Res. Lett., 18, 923926, 1991.
  • Bebout, G. E., The impact of subduction-zone metamorphism on mantle-ocean chemical cycling, Chem. Geol., 126, 191218, 1995.
  • Bebout, G. E., Volatile transfer and recycling at convergent margins: Mass-balance and insights from high-P/T metamorphic rocks, in Subduction Top to Bottom, Geophys. Mon., vol. 96, edited by G. E. Bebout et al., pp. 179193, AGU, Washington, D.C., 1996.
  • Becker, K., et al., Drilling deep into young oceanic crust, Hole 504B, Costa Rica Rift, Rev. Geophys., 27, 79102, 1990.
  • Beiersdorf, H., et al., Age and possible modes of formation of the Celebes Sea basement, and thermal regimes within the accretionary complexes off SW Mindanao and N Sulawesi, paper presented at International Conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific, GEOTHAI'97 conference, Int. Union of Geol. Sci., Bangkok, Thailand, 1997.
  • Bell, D. R., and G. R. Rossman, Water in Earth's mantle: The role of nominally anhydrous minerals, Science, 255, 13911397, 1992.
  • Berner, E. K., and R. A. Berner, The Global Water Cycle: Geochemistry and Environment, 397 pp., Prentice-Hall, Old Tappan, N.J., 1987.
  • Berner, R. A., Global CO2 degassing and the carbon cycle: Comment on “Cretaceous ocean crust at DSDP sites 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing,” Geochim. Cosmochim. Acta, 54, 28892890, 1990.
  • Berner, R. A., and K. Caldeira, The geologic carbon cycle and the evolution of atmospheric carbon dioxide, Eos Trans. AGU, 83(47), Fall Meet. Suppl., F383, 2002.
  • Berner, R. A., and Z. Kothavala, GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301, 182204, 2001.
  • Berner, R. A., A. C. Lasaga, and R. M. Garrels, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641683, 1983.
  • Bevis, M., et al., Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc, Nature, 374, 249251, 1995.
  • Booij, E., and H. Staudigel, Controls and diversity of altered oceanic crust composition, Eos Trans. AGU, 78(46), AGU Fall Meet. Suppl., F806, 1997.
  • Bourbié, T., O. Coussy, and B. Zinszner, Acoustics of Porous Media, 334 pp., Educ. Technol., Paris, 1987.
  • Bray, C. J., and D. E. Karig, Porosity of sediments in accretionary prisms and some implications for dewatering processes, J. Geophys. Res., 90, 768778, 1985.
  • Brias, A., P. Patriat, and P. Tapponnier, Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia, J. Geophys. Res., 98, 62996328, 1993.
  • Broglia, C., and D. Ellis, Effect of alteration, formation absorption, and standoff on the response of the thermal neutron porosity log in gabbros and basalts: Examples from Deep Sea Drilling Project-Ocean Drilling Program sites, J. Geophys. Res., 95, 91719188, 1990.
  • Brown, K. M., and B. Ransom, Porosity corrections for smectite-rich sediments: Impact on studies of compaction, fluid generation, and tectonic history, Geology, 24, 843846, 1996.
  • Buckley, H. A., J. C. Bevan, K. M. Brown, J. R. Johnson, and V. C. Farmer, Glauconite and celadonite: two separate mineral species, Mineral. Mag., 42, 373382, 1978.
  • Busch, W. H., P. R. Castillo, P. A. Floyd, and G. Cameron, Effects of alteration on physical properties of basalts from the Pigafetta and East Mariana Basins, Proc. Ocean Drill. Program Sci. Results, 129, 485499, 1992.
  • Caldeira, K., Long-term control of atmospheric carbon dioxide: Low-temperature seafloor alteration or terrestrial silicate-rock weathering? Am. J. Sci., 295, 10771114, 1995.
  • Cannat, M., How thick is the magmatic crust at slow-spreading oceanic ridges? J. Geophys. Res., 101, 28472857, 1996.
  • Carlson, R. L., Seismic velocities in the uppermost oceanic crust: Age dependence and the fate of layer 2A, J. Geophys. Res., 103, 70697077, 1998.
  • Carlson, R. L., Lower crustal water contents, P-wave velocities, and modal mineralogy of oceanic diabase and gabbro, Eos Trans. AGU, 82(47), Fall. Meet. Suppl., F1154, 2001.
  • Christensen, D. H., and L. J. Ruff, Seismic coupling and outer rise earthquakes, J. Geophys. Res., 93, 13,42113,444, 1988.
  • Christensen, N. I., and M. H. Salisbury, Velocities, elastic moduli and weathering-age relations for Pacific Layer 2 basalts, Earth Planet. Sci. Lett., 19, 461470, 1973.
  • Christensen, N. I., and M. H. Salisbury, Seismic velocities, densities and porosities of Layer 2B and Layer 2C basalts from Hole 504B, Initial Rep. Deep Sea Drill. Proj., 83, 367370, 1985.
  • Christensen, N. I., and J. D. Smewing, Geology and seismic structure of the northern section of the Oman Ophiolite, J. Geophys. Res., 86, 25452555, 1981.
  • Christensen, N. I., W. W. Wepfer, and R. D. Baud, Seismic properties of sheeted dikes from Hole 504B, ODP Leg 111, Proc. Ocean Drill. Program Sci. Results, 111, 171176, 1989.
  • Clarke, W. M., The Data of Geochemistry, U. S. Geol. Surv. Bull., 770, 841 pp., 1924.
  • Coleman, R. C., Ophiolites: Ancient Oceanic Lithosphere?, 229 pp., Springer-Verlag, New York, 1977.
  • COSOD-II, Report of the Second Conference on Scientific Ocean Drilling, Strasbourg, 6–8 July, 1987, 142 pp., JOIDES, Washington, DC, 1987.
  • Crisp, J. A., Rates of magma emplacement and volcanic output, J. Volcanol. Geotherm. Res., 20, 177211, 1984.
  • Davis, D. M., J. Suppe, and F. A. Dahlen, Mechanics of fold-and-thrust belts and accretionary wedges, J. Geophys. Res., 88, 11531172, 1983.
  • Davis, E. E., et al., FlankFlux: An experiment to study the nature of hydrothermal circulation in young oceanic crust, Can. J. Earth Sci., 29, 925952, 1992.
  • Defant, M. J., and M. S. Drummond, Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347, 662665, 1990.
  • DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Current plate motions, Geophys. J. Int., 101, 425478, 1990.
  • DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21, 21912194, 1994.
  • Dewey, J. F., and B. F. Windley, Growth and differentiation of the continental crust, Philos. Trans. R. Soc. London Ser. A, 301, 189206, 1981.
  • DeWit, M. J., and R. A. Hart, Earth's earliest continental lithosphere, hydrothermal flux and crustal recycling, Lithos, 30, 309335, 1993.
  • Dick, H. J. B., P. S. Meyer, S. H. Bloomer, S. H. Kirby, D. S. Stakes, and C. Mawer, Lithostratigraphic evolution of an in-situ section of oceanic layer 3, Proc. Ocean Drill. Program Sci. Results, 118, 439538, 1991.
  • Dick, H. J. B., et al., A long in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge, Earth Planet. Sci. Lett., 179, 3151, 2000.
  • Dick, H. J., J. Lin, P. J. Michael, H. Schouten, and J. E. Snow, Ultra-slow spreading - a new class of ocean ridge, Eos Trans. AGU, 83(47), Fall Meet. Suppl., F1267, 2002.
  • Dickinson, W. R., Potash-depth (K-h) relations in continental margin and intra-oceanic magmatic arcs, Geology, 3, 5356, 1975.
  • Dickinson, W. R., and T. Hatherton, Andesitic volcanism and seismicity around the Pacific, Science, 157, 801803, 1967.
  • Donnelly, T. W., R. A. Pritchard, R. Emmermann, and H. Puchelt, The aging of oceanic crust: synthesis of the mineralogical and chemical results of Deep Sea Drilling Project, Legs 51 through 53, Initial Rep. Deep Sea Drill. Proj., 51–53, 15631577, 1979a.
  • Donnelly, T. W., G. Thompson, and P. T. Robinson, Very-low-temperature hydrothermal alteration of the oceanic crust and the problem of fluxes of potassium and magnesium, in Deep Drilling Results in the Atlantic Ocean: Ocean Crust, Maurice Ewing Ser., vol. 2, edited by M. Talwani, C. G. A. Harrison, and D. E. Hayes, pp. 369382, AGU, Washington, D.C., 1979b.
  • Dymond, J., and M. Lyle, Particle fluxes in the ocean and implications for sources and preservation of ocean sediments, in Material Fluxes on the Surface of the Earth, edited by W. W. Hay et al., pp. 125142, Natl. Acad. Press, Washington, D.C., 1994.
  • Ekart, D., T. E. Cerling, I. P. Montanez, and N. J. Tabor, A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide, Am. J. Sci., 299, 805827, 1999.
  • Elderfield, H., and A. Schultz, Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean, Annu. Rev. Earth Planet. Sci., 24, 191224, 1996.
  • Ernewein, M., C. Pflumino, and H. Whitechurch, The death of an accretion zone as evidenced by the magmatic history of the Samail ophiolite (Oman), Tectonophysics, 151, 247274, 1988.
  • Ernst, W. G., Hornblende, the continent maker: Evolution of H2O during circum-Pacific subduction versus continental collision, Geology, 27, 675678, 1999.
  • Fehn, U., and L. M. Cathles, The influence of plate movement on the evolution of hydrothermal convection cells in the oceanic crust, Tectonophysics, 125, 289312, 1986.
  • Fisher, A. T., Permeability within basaltic oceanic crust, Rev. Geophys., 36, 143182, 1998.
  • Fisher, A. T., and K. Becker, Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data, Nature, 403, 7174, 2000.
  • Fisher, A., K. Becker, T. N. Narasimhan, M. Langseth, and M. Mottl, Passive, off-axis convection on the southern flank of the Costa Rica Rift, J. Geophys. Res., 95, 93439370, 1990.
  • Fisher, A. T., K. Becker, and T. N. Narasimhan, Off-axis hydrothermal circulation: Parametric tests of a refined model of processes at Deep Sea Drilling Project/Ocean Drilling Program Site 504, J. Geophys. Res., 99, 30973121, 1994.
  • Fisher, D. M., Fabrics and veins in the forearc: A record of cyclic fluid flow at depths of <15 km, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 7589, AGU, Washington, D.C., 1996.
  • Fox, P. J., and J. Stroup, The plutonic foundation of the oceanic crust, in The Sea, vol. 7, The Oceanic Lithosphere, edited by C. Emiliani, pp. 119218, John Wiley, New York, 1981.
  • Francheteau, J., P. Choukroune, R. Hekinian, X. Le Pichon, and H. D. Needham, Oceanic fracture zones do not provide deep sections in the crust, Can. J. Earth Sci., 13, 12231235, 1975.
  • Franck, S., and C. Bounama, Continental growth and volatile exchange during Earth's evolution, Phys. Earth Planet. Int., 100, 189196, 1997.
  • François, L. M., and J. C. G. Walker, Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/86Sr isotopic ratio of seawater, Am. J. Sci., 292, 81135, 1992.
  • Furnes, H., and H. Staudigel, Biological mediation in ocean crust alteration: How deep is the deep biosphere? Earth Planet. Sci. Lett., 166, 97103, 1999.
  • Furnes, H., H. Staudigel, I. H. Thorseth, T. Torsvik, K. Muehlenbachs, and O. Tumyr, Bioalteration of basaltic glass in the oceanic crust, Geochem. Geophys. Geosys., 2, Paper number 2000GC000150, 2001.
  • Fyfe, W. S., Deep fluids and volatile recycling; crust to mantle, Tectonophysics, 275, 243251, 1997.
  • Gaffin, S., Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change, Am. J. Sci., 287, 596611, 1987.
  • Gerlach, T. M., Degassing of carbon dioxide from basaltic magma at spreading centers: 2. mid-oceanic ridge basalts, J. Volcanol. Geotherm. Res., 39, 221232, 1989.
  • Gill, J., Orogenic Andesites and Plate Tectonics, 390 pp., Springer-Verlag, New York, 1981.
  • Gillis, K., and P. T. Robinson, Distribution of alteration zones in the upper oceanic crust, Geology, 16, 262266, 1988.
  • Goldberg, D., The role of downhole measurements in marine geology and geophysics, Rev. Geophys., 35, 315342, 1997.
  • Green, N. L., and D. L. Harry, On the relationship between subducted slab age and arc basalt petrogenesis, Cascadia subduction system, North America, Earth Planet. Sci. Lett., 171, 367381, 1999.
  • Grevemeyer, I., and W. Weigel, Seismic velocities of the uppermost igneous crust versus age, Geophys. J. Int., 124, 631635, 1996.
  • Hacker, B. R., Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 337346, AGU, Washington, D.C., 1996.
  • Hamano, Y., Physical properties of basalts from Holes 417D and 418A, Initial Rep. Deep Sea Drill. Proj., 51–53, 14571466, 1979.
  • Harrison, C. G. A., Constraints on ocean volume change since the Archean, Geophys. Res. Lett., 26, 19131916, 1999.
  • Harry, D. L., and N. L. Green, Slab dehydration and basalt petrogenesis in subduction systems involving very young oceanic lithosphere, Chem. Geol., 160, 309333, 1999.
  • Hart, R. A., Chemical exchange between sea water and deep ocean basalts, Earth Planet. Sci. Lett., 9, 269279, 1970.
  • Hart, R. A., A model for chemical exchange in the basalt-seawater system of oceanic Layer II, Can. J. Earth Sci., 10, 799816, 1973.
  • Hart, S. R., K, Rb, Cs contents, and K/Rb, K/Cs ratios of fresh and altered submarine basalts, Earth Planet. Sci. Lett., 6, 295303, 1969.
  • Hart, S. R., and H. Staudigel, The control of alkalis and uranium in seawater by ocean crust alteration, Earth Planet. Sci. Lett., 58, 202212, 1982.
  • Hart, S. R., A. J. Erlank, and E. J. D. Kable, Sea floor basalt alteration: some chemical and Sr isotopic effects, Contrib. Mineral. Petrol., 44, 219230, 1974.
  • Hart, S. R., J. Blusztajn, H. J. B. Dick, P. S. Meyer, and K. Muehlenbachs, The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros, Geochim. Cosmochim. Acta, 63, 40594080, 1999.
  • Hay, W. W., Pleistocene-Holocene fluxes are not the Earth's norm, in Material Fluxes on the Surface of the Earth, edited by W. W. Hay et al., pp. 1527, Natl. Acad. Press, Washington, D.C., 1994.
  • Hays, J. D., and W. C. Pitman III, Lithospheric plate motion, sea-level changes, and climatic and ecological consequences, Nature, 246, 1822, 1973.
  • Hilde, T. W. C., Sediment subduction versus accretion around the Pacific, Tectonophysics, 99, 381397, 1983.
  • Hill, M. N., Recent geophysical exploration of the ocean floor, Phys. Chem. Earth, 2, 129163, 1957.
  • Holland, H. D., River transport to the oceans, in The Sea, vol. 7, The Oceanic Lithosphere, edited by C. Emiliani, pp. 763800, John Wiley, New York, 1981.
  • Honnorez, J., The aging of the oceanic crust at low temperature, in The Sea, vol. 7, The Oceanic Lithosphere edited by C. Emiliani, pp. 525587, John Wiley, New York, 1981.
  • Honnorez, J., C. Laverne, H.-W. Hubberten, R. Emmermann, and K. Muehlenbachs, Alteration processes in layer 2 basalts from Deep Sea Drilling Project Hole 504B, Costa Rica Rift, Initial Rep. Deep Sea Drill. Proj., 69, 509546, 1983.
  • Honza, E., H. L. Davies, J. B. Keene, and D. L. Tiffin, Plate boundaries and evolution of the Solomon Sea region, Geo. Mar. Lett., 7, 161168, 1987.
  • Humphris, S. E., Hydrothermal processes at mid-ocean ridges, U. S. Natl. Rep. Int. Union Geod. Geophys., 1991–1994, Rev. Geophys., 33, 7180, 1995.
  • Hyndman, R. D., Dipping seismic reflectors, electrically conductive zones and trapped water in the crust over a subducting plate, J. Geophys. Res., 93, 13,39113,405, 1988.
  • Hyndman, R. D., and M. J. Drury, The physical properties of oceanic basement rocks from deep drilling on the Mid-Atlantic Ridge, J. Geophys. Res., 81, 40424052, 1976.
  • Hyndman, R. D., M. Yamano, and D. A. Oleskevich, The seismogenic zone of subduction thrust faults, Island Arc, 6, 244260, 1997.
  • Ildefonse, B., and P. Pezard, Electrical properties of slow-spreading ridge gabbros from ODP Site 735, Southwest Indian Ridge, Tectonophysics, 330, 6992, 2001.
  • Ionov, D. A., W. L. Griffin, and S. Y. Oreilly, Volatile-bearing minerals and lithophile trace elements in the upper mantle, Chem. Geol., 141, 153184, 1997.
  • Ito, E. D., M. Harris, and A. T. Anderson Jr., Alteration of oceanic crust and geologic cycling of chlorine and water, Geochim. Cosmochim. Acta, 47, 16131624, 1983.
  • Itturrino, G. J., N. I. Christensen, K. Becker, L. O. Boldreel, P. K. H. Harvey, and P. Pezard, Physical properties and elastic constants of upper crustal rocks from core-log measurements in Hole 504B, Proc. Ocean Drill. Program Sci. Results, 137/140, 273292, 1995.
  • Iwamori, H., Transportation of H2O and melting in subduction zones, Earth Planet. Sci. Lett., 160, 6580, 1998.
  • Iwamori, H., Transportation of H2O and melting beneath the Japan arcs, Bull. Earthquake Res. Inst. Univ. Tokyo, 76, 377389, 2001.
  • Jambon, A., B. Deruelle, G. Dreibus, and F. Pineau, Chlorine and bromine abundance in MORB; The contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle, Chem. Geol., 126, 101117, 1995.
  • Jarrard, R. D., Relations among subduction parameters, Rev. Geophys., 24, 217284, 1986.
  • Jarrard, R. D., R. L. Larson, A. T. Fisher, and L. J. Abrams, Geophysical aging of oceanic crust: Evidence from Hole 801C, Proc. Ocean Drill. Program Sci. Results, 144, 649663, 1995.
  • Jarrard, R. D., L. J. Abrams, R. Pockalny, R. L. Larson, and T. Hirono, Physical properties of upper oceanic crust: ODP Hole 801C and the waning of hydrothermal circulation, J. Geophys. Res, 108(D7), 2188, doi:10.1029/2001JB001727, 2003.
  • Jochum, K. P., A. W. Hofmann, E. Ito, H. M. Seufert, and W. M. White, K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle, Nature, 306, 431436, 1983.
  • Johnson, D. M., Fluid permeability of oceanic basalts, Initial Rep. Deep Sea Drill. Proj., 51–53, 14731477, 1979a.
  • Johnson, D. M., Crack distribution in the upper oceanic crust and its effects upon seismic velocity, seismic structure, formation permeability, and fluid circulation, Initial Rep. Deep Sea Drill. Proj., 51–53, 14791490, 1979b.
  • Johnson, H. P., and S. W. Semyan, Age variation in the physical properties of oceanic basalts: implications for crustal formation and evolution, J. Geophys. Res., 99, 31233134, 1994.
  • Karato, S., Physical properties of basalts from Deep Sea Drilling Project Hole 504B, Initial Rep. Deep Sea Drill. Proj., 69, 687695, 1983a.
  • Karato, S., Physical properties of basalts from the Galapagos, Leg 70, Initial Rep. Deep Sea Drill. Proj., 70, 423428, 1983b.
  • Karson, J. A., Internal structure of oceanic lithosphere: a perspective from tectonic windows, in Faulting and Magmatism at Mid-Ocean Ridges, Geophys. Monogr. Ser., vol. 106, edited by W. R. Buck et al., 177218, AGU, Washington, D.C., 1998.
  • Karson, J. A., Geologic structure of the uppermost oceanic crust created at fast- to intermediate-rate spreading centers, Annu. Rev. Earth Planet. Sci., 30, 347384, 2002.
  • Kasahara, J., A. Kamimura, G. Fujie, and R. Hino, Influence of water on earthquake generation along subduction zones, Bull. Earthquake. Res. Inst. Univ. Tokyo, 76, 291303, 2001.
  • Kastner, M., H. Elderfield, and J. B. Martin, Fluids in convergent margins: What do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes, Philos. Trans. R. Soc. London, Ser. A, 335, 243259, 1991.
  • Kastner, M., et al., Geochemical and isotopic evidence for fluid flow in the western Nankai subduction zone, Japan, Proc. Ocean Drill. Program Sci. Results, 131, 397413, 1993.
  • Kato, T., and Y. Kotake, Tectonics of the Philippine Sea plate as seen from GPS observations, Eos Trans. AGU, 83(47), Fall Meet. Suppl., F1321, 2002.
  • Kerrick, D. M., Present and past nonanthropogenic CO2 degassing from the solid Earth, Rev. Geophys., 39, 565585, 2001.
  • Kerrick, D. M., and J. A. D. Connolly, Subduction of ophicarbonates and recycling of CO2 and H2O, Geology, 26, 375378, 1998.
  • Kerrick, D. M., and J. A. D. Connolly, Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling, Earth Planet. Sci. Lett., 189, 1929, 2001.
  • Kirby, S. H., E. R. Engdahl, and R. Denlinger, Intraslab earthquakes and arc volcanism: dual physical expressions of crustal and uppermost mantle metamorphism in subducting slabs, in Subduction Top to Bottom, Geophys. Monogr. Ser., 96, edited by G. E. Bebout et al., pp. 195214, AGU, Washington, D.C., 1996.
  • Kominz, M. A., Oceanic ridge volumes and sea-level change: An error analysis, in Interregional Unconformities and Hydrocarbon Accumulation, edited by J. S. Schlee, Mem. Am. Assoc. Petrol. Geol., 36, 109127, 1984.
  • Larson, R. L., Geological consequences of superplumes, Geology, 19, 547550, 1991.
  • Lawrence, J. R., J. J. Drever, and M. Kastner, Low temperature alteration of basalts predominates at DSDP Site 395, Initial Rep. Deep Sea Drill. Proj., 45, 609612, 1978.
  • Lecuyer, C., M. Brouxel, and F. Albarede, Elemental fluxes during hydrothermal alteration of the Trinity Ophiolite (California, USA) by seawater, Chem. Geol., 89, 87115, 1990.
  • Leeman, W. P., Boron and other fluid-mobile elements in volcanic arc lavas: Implications for subduction processes, in Subduction Top to Bottom, Geophys. Monogr., vol. 96, edited by G. E. Bebout et al., pp. 269276, AGU, Washington, D.C., 1996.
  • Le Pichon, X., P. Henry, and the Kaiko-Nankai Scientific Crew, Water budgets in accretionary wedges: A comparison, Philos. Trans. R. Soc. London Ser. A, 335, 315330, 1991.
  • Le Pichon, X., P. Henry, and S. Lallemant, Accretion and erosion in subduction zones: The role of fluids, Annu. Rev. Earth Planet. Sci., 21, 307331, 1993.
  • Lippard, S. J., A. W. Shelton, and I. G. Gass, The Ophiolite of Northern Oman, 178 pp., Blackwell Sci., Malden, Mass., 1986.
  • Liu, J., S. R. Bohlen, and W. G. Ernst, Stability of hydrous phases in subducting oceanic crust, Earth Planet. Sci. Lett., 143, 161171, 1996.
  • Livingstone, D. A., Chemical composition of rivers and lakes, U. S. Geol. Survey Prof. Paper, 440-G, G1G64, 1963.
  • Magenheim, A. J., A. J. Spivack, P. J. Michael, and J. M. Gieskes, Chlorine stable isotope composition of the oceanic crust: Implication for Earth's distribution of chlorine, Earth Planet. Sci. Lett., 131, 427432, 1995.
  • Martin, W. R., and F. L. Sayles, Seafloor diagenetic fluxes, in Material Fluxes on the Surface of the Earth, edited by W. W. Hay, et al., pp. 143163, Natl. Acad. Press, Washington, D.C., 1994.
  • Marty, B., and I. N. Tolstikhin, CO2 fluxes from midocean ridges, arcs and plumes, Chem. Geol., 145, 233248, 1998.
  • McCaffrey, R., Influences of recurrence times and fault zone temperatures on the age-rate dependence of subduction zone seismicity, J. Geophys. Res., 102, 22,83922,854, 1997.
  • McCulloch, M. T., The role of subducted slabs in an evolving earth, Earth Planet. Sci. Lett., 115, 89100, 1993.
  • McGovern, P. J., and G. Schubert, Thermal evolution of the Earth: Effects of volatile exchange between atmosphere and interior, Earth Planet. Sci. Lett., 96, 2737, 1989.
  • Meade, C., and R. Jeanloz, Deep-focus earthquakes and recycling of water into the Earth's mantle, Science, 252, 6872, 1991.
  • Meybeck, M., Concentrations des eaux fluviales en éléments majeurs et apports en solution aux océans, Rev. Geol. Dyn. Geogr. Phys., 21, 215246, 1979.
  • Meybeck, M., Atmospheric inputs and river transport of dissolved substances, in Dissolved Load of Rivers and Surface Water Quantity/Quality Relationships, Proceedings of Hamburg Symposium, IAHS Publ., 141, edited by B. W. Webb, pp. 173192, Int. Assoc. of Hydrol. Sci. Press, Wallingford, Oxfordshire, U.K., 1983.
  • Meybeck, M., Origin and variable composition of present day riverborne material, in Material Fluxes on the Surface of the Earth, edited by W. W. Hay et al., pp. 6173, Natl. Acad. Press, Washington, D.C., 1994.
  • Milliman, J. D., and R. H. Meade, World-wide delivery of river sediment to the oceans, J. Geology, 91, 121, 1983.
  • Milliman, J. D., and J. P. M. Syvitski, Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, in Material Fluxes on the Surface of the Earth, edited by W. W. Hay, et al., pp. 7485, Natl. Acad. Press, Washington, D.C., 1994.
  • Minster, J. B., and T. H. Jordan, Present-day plate motions, J. Geophys. Res., 83, 53315354, 1978.
  • Miyazaki, S., and K. Heki, Crustal velocity field of southwest Japan: Subduction and arc-arc collision, J. Geophys. Res., 106, 43054326, 2001.
  • Moore, J. C., and D. Saffer, Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress, Geology, 29, 183186, 2001.
  • Moore, J. C., and P. Vrolijk, Fluids in accretionary prisms, Rev. Geophys., 30, 113135, 1992.
  • Moos, D., and D. Marion, Morphology of extrusive basalts and its relationship to seismic velocities in the shallow oceanic crust, J. Geophys. Res., 99, 29852994, 1994.
  • Mottl, M. J., and C. G. Wheat, Hydrothermal circulation through mid-ocean ridge flanks: Fluxes of heat and magnesium, Geochim. Cosmochim. Acta, 58, 22252237, 1994.
  • Muehlenbachs, K., The alteration and aging of the basaltic layer of the sea floor: oxygen isotope evidence from DSDP/IPOD Legs 51, 52, and 53, Initial Rep. Deep Sea Drill. Proj., 51–53, 11591167, 1979.
  • Nakamori, T., Global carbonate accumulation rates from Cretaceous to Present and their implications for the carbon cycle model, Island Arc, 10, 18, 2001.
  • Nockolds, S. R., Average chemical compositions of some igneous rocks, Geol. Soc. Am. Bull., 65, 10071032, 1954.
  • Nur, A., Effects of stress on velocity anisotropy in rocks with cracks, J. Geophys. Res., 76, 20222034, 1971.
  • Omori, S., S. Kamiya, S. Maruyama, and D. Zhao, Morphology of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite, Bull. Earthquake Res. Inst. Univ. Tokyo, 76, 455478, 2001.
  • Ono, S., Stability limits of hydrous minerals in sediment and midocean ridge basalt compositions: Implications for water transport in subduction zones, J. Geophys. Res., 103, 18,25318,267, 1998.
  • Parsons, B., The rates of plate creation and consumption, Geophys. J. R. Astron. Soc., 67, 437448, 1981.
  • Pawley, A. R., The pressure and temperature stability limits of lawsonite: Implications for H2O recycling in subduction zones, Contrib. Mineral. Petrol., 118, 99108, 1994.
  • Pawley, A. R., and J. R. Holloway, Water sources for subduction zone volcanism: New experimental constraints, Science, 260, 664667, 1993.
  • Peacock, S. M., Fluid processes in subduction zones, Science, 248, 329337, 1990.
  • Peacock, S. M., Numerical simulation of subduction zone pressure temperature time paths - constraints on fluid production and arc magmatism, Philos. Trans. R. Soc. London Ser. A, 335, 341353, 1991.
  • Peacock, S. M., The importance of blueschist-eclogite dehydration reactions in subducting oceanic crust, Geol. Soc. Amer. Bull., 105, 684694, 1993.
  • Peacock, S. M., Thermal and petrological structure of subduction zones, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 119133, AGU, Washington, D.C., 1996.
  • Peacock, S. M., Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299302, 2001.
  • Peacock, S. M., and R. D. Hyndman, On the importance of serpentine in the subduction factory, Eos Trans. AGU, 82(47), Fall Meet. Suppl., F1154, 2001.
  • Peacock, S. M., T. Rushmer, and A. B. Thompson, Partial melting of subducting oceanic crust, Earth Planet. Sci. Lett., 121, 227244, 1994.
  • Pearson, P. N., and M. R. Palmer, Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695699, 2000.
  • Pezard, P. A., Electrical properties of mid-ocean ridge basalt and implications for the structure of the upper oceanic crust at Hole 504B, J. Geophys. Res., 95, 92379264, 1990.
  • Pezard, P. A., F. Einaudi, D. Hermitte, J.-J. Cocheme, C. Coulon, and C. Laverne, MORB emplacement and structure; Insights from the Semail Ophiolite, Oman, Geophys. Res. Lett., 27, 39333936, 2000.
  • Philippot, P., P. Agrinier, and M. Scambelluri, Chlorine cycling during subduction of altered oceanic crust, Earth Planet. Sci. Lett., 161, 3344, 1998.
  • Plank, T., and C. H. Langmuir, Tracing trace elements from sediment input to volcanic output at subduction zones, Nature, 362, 739743, 1993.
  • Plank, T., and C. H. Langmuir, The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325394, 1998.
  • Poli, S., and M. W. Schmidt, H2O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems, J. Geophys. Res., 100, 22,29922,314, 1995.
  • Purdy, G. M., L. S. L. Kong, G. L. Christeson, and S. C. Solomon, Relationship between spreading rate and the seismic structure of mid-ocean ridges, Nature, 355, 815817, 1992.
  • Raitt, R. W., The crustal rocks, in The Sea, vol. 3, edited by M. N. Hill, pp. 85102, Wiley-Interscience, New York, 1963.
  • Raleigh, C. B., and M. S. Paterson, Experimental deformation of serpentinite and its tectonic implications, J. Geophys. Res., 70, 39653985, 1965.
  • Rangin, C., and E. Silver, Geological setting of the Celebes and Sulu Seas, Proc. Ocean Drill Program Initial Rep., 124, 3542, 1990.
  • Ransom, B., and H. C. Helgeson, A chemical and thermodynamic model of dioctehedral 2:1 layer clay minerals in diagenetic processes: Dehydration of dioctahedral aluminous smectite as a function of temperature and depth in sedimentary basins, Am. J. Sci., 295, 245281, 1995.
  • Rea, D. K., Geologic records in deep-sea muds, GSA Today, 3, 205210, 1993.
  • Rea, D. K., and L. J. Ruff, Composition and mass flux of sediment entering the world's subduction zones: Implications for global sediment budgets, great earthquakes, and volcanism, Earth Planet. Sci. Lett., 140, 112, 1996.
  • Reymer, A., and G. Schubert, Phanerozoic addition rates to the continental crust and crustal growth, Tectonics, 3, 6377, 1984.
  • Robertson, A. H. F., and Shipboard Scientific Party, Tectonic introduction, Proc. Ocean Drill. Program Init. Rep., 160, 520, 1996.
  • Robinson, P. T., M. F. Flower, H. Staudigel, and D. A. Swanson, Lithology and eruptive stratigraphy of Cretaceous oceanic crust, western Atlantic, Initial Rep. Deep Sea Drill. Proj., 51–53, 15351556, 1979.
  • Robinson, P. T., H. J. B. Dick, D. Von Herzen, and R. Pierre, Metamorphism and alteration in oceanic layer 3: Hole 735B, Proc. Ocean Drill. Program Sci. Results, 118, 541562, 1991.
  • Ronov, A. B., and A. A. Yaroshevskiy, A new model for the chemical structure of the Earth's crust, Geochem. Int., 13, 89121, 1976.
  • Rubey, W. W., Geologic history of sea water: an attempt to state the problem, Geol. Soc. Am. Bull., 62, 11111147, 1951.
  • Ruff, L., and H. Kanamori, Seismicity and the subduction process, Phys. Earth Planet. Int., 23, 240252, 1980.
  • Ruff, L. J., and B. W. Tichelaar, What controls the seismogenic plate interface in subduction zones? in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 105111, AGU, Washington, D.C., 1996.
  • Ryan, J., J. Morris, G. Bebout, and B. Leeman, Describing chemical fluxes in subduction zones: insights from “depth profiling” studies of arc and forearc rocks, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 263268, AGU, Washington, D.C., 1996.
  • Saffer, D. M., and B. A. Bekins, Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget, J. Geophys. Res., 103, 30,35130,370, 1998.
  • Saffer, D. M., and B. A. Bekins, Hydrologic controls on the morphology and mechanics of accretionary wedges, Geology, 30, 271274, 2002.
  • Sager, W., Argo abyssal plain magnetic lineations revisited: Implications for the onset of seafloor spreading and tectonic evolution of the Eastern Indian Ocean, Proc. Ocean Drill. Program Sci. Results, 123, 659669, 1992.
  • Salisbury, M. H., N. I. Christensen, and R. H. Wilkens, Nature of the Layer 2/3 transition from a comparison of laboratory and logging velocities and petrology at the base of Hole 504B, Proc. Ocean Drill. Program Sci. Results, 148, 409414, 1996.
  • Sansone, F. J., M. J. Mottl, E. J. Olson, C. G. Wheat, and M. D. Lilley, CO2-depleted fluids from mid-ocean ridge-flank hydrothermal springs, Geochim. Cosmochim. Acta, 62, 22472252, 1998.
  • Schilling, J.-G., C. K. Unni, and M. L. Bender, Origin of chlorine and bromine in the oceans, Nature, 273, 631636, 1978.
  • Schmidt, M. W., Experimental constraints on recycling of potassium from subducted oceanic crust, Science, 272, 19271930, 1996.
  • Schmidt, M. W., and S. Poli, Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 163, 361379, 1998.
  • Schmincke, H.-U., and U. Bednarz, Pillow-, sheet flow-, and breccia volcano-tectonic-hydrothermal cycles in the Extrusive Series of the northwestern Troodos Ophiolite (Cyprus), in Proceedings Symposium Troodos 87–Ophiolites and Oceanic Lithosphere, edited by J. Malpas et al., pp. 185207, Geol. Surv. Dept., Nicosia, Cyprus, 1990.
  • Schreiber, E., and P. J. Fox, Compressional wave velocities and mineralogy of fresh basalts from the FAMOUS area and the Oceanographer Fracture Zone and the texture of Layer 2A of the oceanic crust, J. Geophys. Res., 81, 40714076, 1976.
  • Schreiber, E., and P. J. Fox, Density and P-wave velocity of rocks from the FAMOUS region and their implication to the structure of the oceanic crust, Geol. Soc. Am. Bull., 88, 600608, 1977.
  • Seno, T., S. Stein, and A. E. Gripp, A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17,94117,948, 1993.
  • Serra, O., Fundamentals of Well Log Interpretation, vol. 2, The Interpretation of Logging Data, 684 pp., Elsevier, New York, 1986.
  • Shaw, P., Age variations of oceanic crust Poisson's ratio: Inversion and a porosity inversion model, J. Geophys. Res., 99, 30573066, 1994.
  • Shimakawa, Y., and Y. Honkura, Electrical conductivity structure beneath the Ryukyu Trench-Arc system and its relation to subduction of the Philippine Sea plate, J. Geomag. Geoelect., 43, 120, 1991.
  • Shipboard Scientific Party, Site 395, Initial Rep. Deep Sea Drill. Proj., 45, 131264, 1978.
  • Shipboard Scientific Party, Site 562, Initial Rep. Deep Sea Drill. Proj., 82, 255278, 1985.
  • Shipboard Scientific Party, Site 735, Proc. Ocean Drill. Program Initial Rep., 118, 89222, 1989.
  • Shipboard Scientific Party, Site 768, Proc. Ocean Drill. Program Initial Rep., 124, 195297, 1990a.
  • Shipboard Scientific Party, Site 770, Proc. Ocean Drill. Program Initial Rep., 124, 343397, 1990b.
  • Shipboard Scientific Party, Site 504, Proc. Ocean Drill. Program Initial Rep., 140, 37200, 1992.
  • Shipboard Scientific Party, Site 894, Proc. Ocean Drill. Program Initial Rep., 147, 45108, 1993.
  • Shipboard Scientific Party, Site 735 [online], Proc. Ocean Drill. Program Initial Rep., 176, 1314, 1999. (Available at http://www-odp.tamu.edu/publications/176_IR/VOLUME/CHAPTERS/CHAP_03.PDF).
  • Shipboard Scientific Party, Site 801 [online], Proc. Ocean Drill. Program Initial Rep., 185, 1222, 2000a. (Available at http://www-odp.tamu.edu/publications/185_IR/VOLUME/CHAPTERS/IR185_03.PDF).
  • Shipboard Scientific Party, Site 1149 [online], Proc. Ocean Drill. Program Initial Rep., 185, 1190, 2000b. (Available at http://www-odp.tamu.edu/publications/185_IR/VOLUME/CHAPTERS/IR185_04.PDF).
  • Shipboard Scientific Party, Site 1222 [online], Proc. Ocean Drill. Program Initial Rep., 199, 157, 2002. (Available at http://www-odp.tamu.edu/publications/199_IR/VOLUME/CHAPTERS/IR199_15.PDF).
  • Sleep, N. H., Thermal history and degassing of the Earth; some simple calculations, J. Geol., 87, 671686, 1979.
  • Sleep, N. H., and T. J. Wolery, Sediment subduction and alteration of oceanic crust, a chemical constraint (abstract), Eos Trans. AGU, 60, 392, 1979.
  • Small, C., Global systematics of mid-ocean ridge morphology, in Faulting and Magmatism at Mid-Ocean Ridges, Geophys. Monogr. Ser., vol. 106, edited by W. R. Buck et al., pp. 125, AGU, Washington, D.C., 1998.
  • Sobolev, A. V., and M. Chaussidon, H2O concentrations in primary melts from supra-subduction zones and midocean ridges: Implications for H2O storage and recycling in the mantle, Earth Planet. Sci. Lett., 137, 4555, 1996.
  • Spivack, A. J., and H. Staudigel, Low-temperature alteration of the upper oceanic crust and the alkalinity budget of seawater, Chem. Geol., 115, 239247, 1994.
  • Sprague, D., and H. N. Pollack, Heat flow in the Mesozoic and Cenozoic, Nature, 285, 393395, 1980.
  • Staudigel, H., and S. D. King, Ultrafast subduction: The key to slab recycling efficiency and mantle differentiation, Earth Planet. Sci. Lett., 109, 517530, 1992.
  • Staudigel, H., S. R. Hart, and S. Richardson, Alteration of the oceanic crust: Processes and timing, Earth Planet. Sci. Lett., 52, 311327, 1981.
  • Staudigel, H., S. R. Hart, H.-U. Schmincke, and B. M. Smith, Cretaceous ocean crust at DSDP sites 417 and 418; Carbon uptake from weathering versus loss by magmatic outgassing, Geochim. Cosmochim. Acta, 53, 30913094, 1989.
  • Staudigel, H., T. Plank, B. White, and H.-U. Schmincke, Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust; DSDP sites 417 and 418, in Subduction Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 1938, AGU, Washington, D.C., 1996.
  • Staudigel, H., et al., Geochemical Earth Reference Model (GERM); Description of the initiative, Chem. Geol., 145, 153159, 1998a.
  • Staudigel, H., A. Yayanos, R. Chastain, G. Davies, E. A. T. Verdurmen, P. Schiffman, R. Bourcier, and H. de Baar, Biologically mediated dissolution of volcanic glass in seawater, Earth Planet. Sci. Lett., 164, 233244, 1998b.
  • Stein, C. A., and S. Stein, Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow, J. Geophys. Res., 99, 30813095, 1994.
  • Stephen, R. A., Data report: physical properties measurements in ODP Hole 735B [online], Proc. Ocean Drill Program Sci. Results, 176, 2001. (Available at http://www-odp.tamu.edu/publications/176SR/chap.02/chap.02.htm).
  • Sugisaki, R., Chemical characteristics of volcanic rocks: Relation to plate movements, Lithos, 9, 1730, 1976.
  • Tatsumi, Y., and T. Kogiso, Trace-element transport during dehydration processes in the subducted oceanic crust: 2. Origin of chemical and physical characteristics in arc magmatism, Earth Planet. Sci. Lett., 148, 207221, 1997.
  • Thompson, A. B., Water in the Earth's upper mantle, Nature, 358, 295302, 1992.
  • Thompson, G., Metamorphic and hydrothermal processes: basalt-seawater interaction, in Oceanic Basalts, edited by P. A. Floyd, pp. 148173, Van Nostrand Reinhold, New York, 1991.
  • Toh, H., Electrical conductivity structure of the Izu-Bonin Arc revealed by seafloor electromagnetic observations, Ph.D. thesis, Ocean Research Inst., Univ. of Tokyo, Tokyo, 1993.
  • Tregoning, P., F. Tan, J. Gilliland, H. McQueen, and K. Lambeck, Present-day crustal motion in the Solomon Islands from GPS observations, Geophys. Res. Lett., 25, 36273630, 1998.
  • Ulmer, P., and V. Trommsdorff, Serpentine stability to mantle depths and subduction-related magmatism, Science, 268, 858861, 1995.
  • Underwood, M. B., et al., Sediment geochemistry, clay mineralogy, and diagenesis: A synthesis of data from Leg 131, Nankai Trough, Proc. Ocean Drill. Program Sci. Results, 131, 343363, 1993.
  • Vera, E. E., and J. C. Mutter, Crustal structure in the ROSE area of the East Pacific Rise: One-dimensional travel time inversion of sonobuoys and expanded spread profiles, J. Geophys. Res., 93, 66356648, 1988.
  • Von Herzen, R., Geothermal evidence for continuing hydrothermal circulation in older (>60 M.y.) ocean crust, in Hydrology of the Oceanic Lithosphere, edited by E. Davis, and H. Elderfield, Cambridge Univ. Press, New York, in press, 2003.
  • von Huene, R., and D. W. Scholl, Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust, Rev. Geophys., 29, 279316, 1991.
  • Wang, K., and E. E. Davis, In the pursuit of hydrothermal circulation and hydration depths of oceanic plates, Eos Trans. AGU, 83(47), Fall Meet. Suppl., F1252, 2002.
  • Wannamaker, P. E., J. R. Booker, A. G. Jones, A. D. Chave, J. H. Filloux, H. S. Waff, and L. K. Law, Resistivity cross section through the Juan de Fuca subduction system and its tectonic implications, J. Geophys. Res., 94, 14,12714,144, 1989.
  • White, R. S., D. McKenzie, and R. K. O'Nions, Oceanic crustal thickness from seismic measurements and rare earth element inversions, J. Geophys. Res., 97, 19,68319,715, 1992.
  • Wilkens, R. H., N. I. Christensen, and L. Slater, High-pressure seismic studies of Leg 69 and 70 basalts, Initial Rep. Deep Sea Drill. Proj., 69, 683686, 1983.
  • Wilkens, R. H., G. J. Fryer, and J. Karsten, Evolution of porosity and seismic structure of upper oceanic crust: importance of aspect ratios, J. Geophys. Res., 96, 17,98117,995, 1991.
  • Williams, Q., and R. J. Hemley, Hydrogen in the deep earth, Ann. Rev. Earth Planet. Sci., 29, 365418, 2001.
  • Wyllie, M. R. J., A. R. Gregory, and G. H. F. Gardner, Elastic wave velocities in heterogeneous and porous media, Geophysics, 21, 4170, 1956.
  • Zhang, Y., and A. Zindler, Distribution and evolution of carbon and nitrogen in Earth, Earth Planet. Sci. Lett., 117, 331345, 1993.
  • Zhou, W., D. R. Peacor, J. C. Alt, R. Van der Voo, and L.-S. Kao, TEM study of the alteration of interstitital glass in MORB by inorganic processes, Chem. Geol., 174, 365376, 2001a.
  • Zhou, W., R. Van der Voo, D. R. Peacor, D. Wang, and Y. Zhang, Low-temperature oxidation in MORB of titanomagnetite to titanomaghemite: A gradual process with implications for marine magnetic anomaly amplitudes, J. Geophys. Res., 106, 64096421, 2001b.