• reconstruction technique;
  • electron profile;
  • transition level;
  • ionosonde;
  • GPS;
  • TEC

[1] Ground-based ionosphere sounding measurements alone are incapable of reliably modeling the topside electron density distribution above the F layer peak density height. Such information can be derived from Global Positioning System (GPS)-based total electron content (TEC) measurements. A novel technique is presented for retrieving the electron density height profile from three types of measurements: ionosonde (foF2, foE, M3000F2, hmf2), TEC (GPS-based), and O+-H+ ion transition level. The method employs new formulae based on Chapman, sech-squared, and exponential ionosphere profilers to construct a system of equations, the solution of which system provides the unknown ion scale heights, sufficient to construct a unique electron density profile at the site of measurements. All formulae are based on the assumption of diffusive equilibrium with constant scale height for each ion species. The presented technique is most suitable for middle- and high-geomagnetic latitudes and possible applications include: development, evaluation, and improvement of theoretical and empirical ionospheric models, development of similar reconstruction methods utilizing low-earth-orbiting satellite measurements of TEC, operational reconstruction of the electron density on a real-time basis, etc.