SEARCH

SEARCH BY CITATION

References

  • Birch, F., Flow of heat in the Front Range, Colorado, Geol. Soc. Am. Bull., 61, 567630, 1950.
  • Blackwell, D. D., J. L. Steele, and C. A. Brott, The terrain effect on terrestrial heat flow, J. Geophys. Res., 85, 47574772, 1980.
  • Bredehoeft, J. D., and I. S. Papadopulos, Rates of vertical groundwater movement estimated from the Earth's thermal profile, Water Resour. Res., 1, 325328, 1965.
  • Brune, J. N., T. L. Henyey, and R. F. Roy, Heat flow, stress, and rate of slip along the San Andreas fault, California, J. Geophys. Res., 74, 38213827, 1969.
  • Byerlee, J. D., Friction of rocks, Pure Appl. Geophys., 116, 615629, 1978.
  • Caine, J. S., J. P. Evans, and C. B. Forster, Fault zone architecture and permeability structure, Geology, 24, 10251028, 1996.
  • Coyle, B., and M. D. Zoback, In situ permeability and fluid pressure measurements at ∼2 km depth in the Cajon Pass research well, Geophys. Res. Lett., 15, 10291032, 1988.
  • Durbin, T. J., Calibration of a mathematical model of the Antelope Valley groundwater basin, California, U.S. Geol. Surv. Water Supply Pap., 2046, 51 pp., 1978.
  • Ellsworth, W. L., Earthquake history, 1769–1989, in The San Andreas Fault System, California, edited by R. E. Wallace, U.S. Geol. Soc. Prof. Pap., 1515, 153187, 1990.
  • Forster, C., and L. Smith, Groundwater flow systems in mountainous terrain: 2. Controlling factors, Water Resour. Res., 24, 10111023, 1988.
  • Fuis, G., et al., Crustal structure and tectonics from the Los Angeles basin to the Mojave Desert, southern California, Geology, 29, 1518, 2001.
  • Galloway, D. L., et al., Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California, Water Resour. Res., 34, 25732585, 1998.
  • Griscom, A., and R. C. Jachens, Crustal and lithospheric structure from gravity and magnetic studies, in The San Andreas Fault System, California, edited by R. E. Wallace, U.S. Geol. Soc. Prof. Pap., 1515, 239259, 1990.
  • Guzofski, C. A., and K. P. Furlong, Migration of the Mendocino triple junction and ephemeral crustal deformation: Implications for California Coast range heat flow, Geophys. Res. Lett., 29(1), 1012, doi:10.1029/2001GL013614, 2002.
  • Hardebeck, J. L., and E. Hauksson, Role of fluids in faulting inferred from stress field signatures, Science, 285, 236239, 1999.
  • Hickman, S. H., Stress in the lithosphere and the strength of active faults, U.S. Natl. Rep. Int. Union Geod. Geophys., Rev. Geophys., Suppl., 759775, 1991.
  • Hill, D. P., J. P. Eaton, and L. M. Jones, Seismicity: 1980–86, in The San Andreas Fault System, California, edited by R. E. Wallace, U.S. Geol. Soc. Prof. Pap., 1515, 115151, 1990.
  • Ingebritsen, S. E., and C. E. Manning, Geological implications of a permeability-depth curve for the continental crust, Geology, 27, 11071110, 1999.
  • Jones, L. M., Focal mechanisms and the state of stress on the San Andreas fault in southern California, J. Geophys. Res., 93, 88698891, 1988.
  • Kharaka, Y. K., et al., Geochemistry and hydromechanical interaction of fluids associated with the San Andreas Fault System, California, in Faults and Subsurface Fluid Flow in the Shallow Crust, Geophys. Monogr. Ser., vol. 113, edited by W. C. Haneberg et al., pp. 129148, AGU, Washington, D. C., 1999.
  • Lachenbruch, A. H., and J. H. Sass, Thermo-mechanical aspects of the San Andreas Fault system, in Conference on Tectonic Problems of the San Andreas Fault System, Proceedings, Stanford Univ. Publ. Geol. Sci., 13, 192205, 1973.
  • Lachenbruch, A. H., and J. H. Sass, Heat flow and energetics of the San Andreas fault zone, J. Geophys. Res., 85, 61856222, 1980.
  • Lachenbruch, A. H., and J. H. Sass, Heat flow from Cajon Pass, fault strength, and tectonic implications, J. Geophys. Res., 97, 49955015, 1992.
  • Lachenbruch, A. H., et al., Heat flow at Cajon Pass, California, revisited, J. Geophys. Res., 100, 20052012, 1995.
  • Lopez, D. L., and L. Smith, Fluid flow in fault zones: Analysis of the interplay of convective circulation and topographically driven groundwater flow, Water Resour. Res., 31, 14891503, 1995.
  • Mount, V. S., and J. Suppe, State of stress near the San Andreas Fault; implications for wrench tectonics, Geology, 15, 11431146, 1987.
  • O'Neil, J. R., and T. C. Hanks, Geochemical evidence for water-rock interaction along the San Andreas and Garlock faults of California, J. Geophys. Res., 85, 62866292, 1980.
  • Oppenheimer, D. H., P. A. Reasenberg, and R. W. Simpson, Fault-plane solutions for the 1984 Morgan Hill, California earthquake sequence: Evidence for the state of stress on the Calaveras fault, J. Geophys. Res., 93, 90079026, 1988.
  • Planert, M., and J. S. Williams, Ground water atlas of the United States, Segment 1 California, Nevada, U.S. Geol. Surv. Hydrol. Invest. Atlas 730-B, 28 pp., 1995.
  • Rojstaczer, S., and S. Wolf, Permeability changes associated with large earthquakes: An example from Loma Prieta, California, Geology, 20, 211214, 1992.
  • Sass, J. H., et al., An analysis of thermal data from the vicinity of Cajon Pass, California, U.S. Geol. Surv. Open File Rep., 86–468, 47 pp., 1986.
  • Sass, J. H., et al., Heat flow from a scientific research well at Cajon Pass, California, J. Geophys. Res., 97, 50175030, 1992.
  • Sass, J. H., et al., Thermal regime of the San Andreas fault near Parkfield, California, J. Geophys. Res., 102, 27,57527,585, 1997.
  • Scholz, C., Evidence for a strong San Andreas fault, Geology, 28, 163166, 2000.
  • Smith, L., and D. S. Chapman, On the thermal effects of groundwater flow: 1. Regional scale systems, J. Geophys. Res., 88, 593608, 1983.
  • Thurber, C., et al., Two-dimensional seismic image of the San Andreas Fault in the northern Gabilan Range, central California: Evidence for fluids in the fault zone, Geophys. Res. Lett., 24, 15911594, 1997.
  • Townend, J., and M. D. Zoback, How faulting keeps the crust strong, Geology, 28, 399402, 2000.
  • Townend, J., and M. D. Zoback, Implications of earthquake focal mechanisms for the frictional strength of the San Andreas Fault system, in The Nature and Tectonic Significance of Fault Zone Weakening, edited by R. E. Holdsworth, R. A. Strachan, J. F. Magloughlin, and R. J. Knipe, Geol. Soc. Spec. Publ., 186, 1321, 2001.
  • Unsworth, M., et al., Along strike variations in the electrical structure of the San Andreas Fault at Parkfield, California, Geophys. Res. Lett., 27, 30213024, 2000.
  • Voss, C. I., A finite element simulation model for saturated-unsaturated, fluid density-dependent groundwater flow with energy transport or chemically reactive single-species solute transport: U.S. Geol. Surv. Water Resour. Invest. Rep., 84–4369, 1984.
  • Williams, C. F., and T. N. Narisimhan, Hydrogeologic constraints on heat flow along the San Andreas Fault: A testing of hypotheses, Earth Planet. Sci. Lett., 92, 131143, 1989.
  • Zoback, M. D., and G. C. Beroza, Evidence for near-frictionless faulting in the 1989 (M6. 9) Loma Prieta, California, earthquake and its aftershocks, Geology, 21, 181185, 1993.
  • Zoback, M. D., et al., New evidence on the state of stress of the San Andreas fault system, Science, 238, 11051111, 1987.