SEARCH

SEARCH BY CITATION

References

  • Adkins, J. F., and D. P. Schrag, Pore fluid constraints on deep ocean temperature and salinity during the Last Glacial Maximum, Geophys. Res. Lett., 28, 771774, 2001.
  • Berner, R. A., Early Diagenesis: A Theoretical Approach, Princeton Univ. Press, Princeton, N. J., 1980.
  • Boetius, A., K. Ravenschlag, C. J. Schubert, and D. Rickert, A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, 623626, 2000.
  • Bonham, L. C., Migration of hydrocarbons in compacting basins, AAPG Bull., 64, 549567, 1980.
  • Borowski, W. S., C. K. Paull, and W. Ussler, Marine porewater sulfate profiles indicate in situ methane flux from underlying gas hydrate, Geology, 24, 655658, 1996.
  • Borowski, W. S., C. K. Paull, and W. Ussler, Carbon cycling within the upper methanogenic zone of continental rise sediments: An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits, Mar. Chem., 57, 299311, 1997.
  • Borowski, W. S., C. K. Paull, and W. Ussler, Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates, Mar. Geol., 159, 131154, 1999.
  • Boudreau, B. P., and J. T. Westrich, The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments, Geochim. Cosmochim. Acta, 48, 25032516, 1984.
  • Claypool, G. E., and I. R. Kaplan, The origin and distribution of methan in marine sediments, in Natural Gases in Marine Sediments, edited by I. R. Kaplan, pp. 99139, Plenum, New York, 1974.
  • Clennell, M. B., M. Hovland, J. S. Booth, P. Henry, and W. J. Winters, Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties, J. Geophys. Res., 104, 22,98523,005, 1999.
  • Davie, M. K., and B. A. Buffett, A numerical model for the formation of gas hydrate below the seafloor, J. Geophys. Res., 106, 497514, 2001.
  • Davie, M. K., and B. A. Buffett, Sources of methane for marine gas hydrate: Inferences from a comparison of observations and numerical models, Earth Planet. Sci. Lett., 206, 5163, 2003.
  • Davis, E. E., and K. Becker, Observations of natural-state fluid pressures and temperatures in young oceanic crust and inferences regarding hydrothermal circulation, Earth Planet. Sci. Lett, 204, 231248, 2002.
  • Dickens, G. R., The potential volume of oceanic methane hydrates with variable external conditions, Org. Geochem., 32, 11791193, 2001a.
  • Dickens, G. R., Sulfate profiles and barium fronts in sediment at the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir, Geochim. Comochim. Acta, 65, 529543, 2001b.
  • Dickens, G. R., C. K. Paull, P. Wallace, and Leg 164 Science Party, Direct measurement of in situ methane quantities in a large gas-hydrate reservoir, Nature, 25, 259262, 1997.
  • Dugan, B., and P. B. Flemings, Overpressure and fluid flow in the New Jersey continental slopes: Implications for slope failure and cold seeps, Science, 289, 288291, 2000.
  • Egeberg, P. K., and T. Barth, Contribution of dissolved organic species to the carbon and energy budgets of hydrate bearing deep sea sediments (Ocean Drilling Program Site 997 Blake Ridge), Chem. Geol., 149, 2535, 1999.
  • Egeberg, P. K., and G. R. Dickens, Thermodynamic and pore water halogen constraints on hydrate distribution at ODP Site 997 (Blake Ridge), Chem. Geol., 153, 5379, 1999.
  • Fehn, U., G. Snyder, and P. K. Egeberg, Dating of pore waters with 129I: Relevance for the origin of marine gas hydrates, Science, 289, 23322335, 2000.
  • Hesse, R., and W. Harrison, Gas hydrate (clathrate) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins, Earth Planet. Sci. Lett., 55, 453462, 1981.
  • Holbrook, W. S., H. Hoskins, W. T. Wood, R. A. Stephen, and D. Lizarralde, and Leg 164 Science Party, Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling, Science, 273, 18401843, 1996.
  • Hutchinson, I., The effect of sedimentation and compaction on oceanic heat flow, Geophys. J. R. Astron. Soc., 82, 439459, 1985.
  • Hyndman, R. D., G. F. Moore, and K. Moran, Velocity, porosity and pore-fluid loss from the Nankai subduction zone accretionary prism, Proc. Ocean Drill Prog. Sci. Results, 131, 211270, 1993.
  • Iversen, N., and B. B. Jorgensen, Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity, Geochim. Comochim. Acta, 57, 571578, 1993.
  • Kastner, M., K. A. Kvenvolden, M. J. Whiticar, A. Camerleorghi, and T. D. Lorensen, Relation between pore fluid chemistry and gas hydrate asssociated with bottom simulateing reflectors at the cascadia margin, Proc. Ocean Drill. Program Sci. Results, 146, 175187, 1995.
  • Kvenvolden, K. A., A review of the geochemistry of methane in natural gas hydrate, Org. Geochem., 23, 9971008, 1995.
  • Li, Y. H., and S. Gregory, Diffusion of ions in sea water and in deep-sea sediments, Geochim. Comochim. Acta, 38, 703714, 1974.
  • Matsumoto, R., T. Uchida, A. Waseda, T. Uchida, S. Takeya, T. Hirano, K. Yamada, Y. Maeda, and T. Okui, Occurrence, structure, and composition of natural gas hydrate recovered from the Blake Ridge, Northwest Atlantic, Proc. Ocean Drill. Program Sci. Results, 164, 1328, 2000.
  • Niewöhner, C., C. Hensen, S. Kasten, M. Zabel, and H. D. Schulz, Deep sulfate reduction completely mediated by anaerobi methane oxidation in sediments of the upwelling area off Namibia, Geochim. Cosmochim. Acta, 62, 455464, 1998.
  • Ophan, V. J., C. H. House, K.-U. Hinrichs, K. D. McKeegan, and E. F. DeLong, Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis, Science, 293, 484487, 2001.
  • Paull, C. K., W. Ussler III, and W. S. Borowski, Sources of biogenic methane to form marine gas hydrates, in Natural Gas Hydrates, edited by E. D. Sloan, J. Happel Jr., and M. Hnatow, pp. 335347, N. Y. Acad. Sci., New York, 1994.
  • Paull, C. K., et al., Proceedings of the Ocean Drilling Program, Initial Results, vol. 164, Ocean Drill. Program, College Station, Tex., 1996.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge Univ. Press, New York, 1988.
  • Rehder, G., P. W. Brewer, E. T. Peltzer, and G. Friederich, Enhanced lifetime of methane bubble streams within the deep ocean, Geophys. Res. Lett., 29(15), 1731, doi:10.1029/2001GL013966, 2002.
  • Rowe, M. M., and J. F. Gettrust, Faulted structure of the bottom-simulating reflector on the Blake Ridge, western North-Atlantic, Geology, 21, 833836, 1993.
  • Ruppel, C., Anomalously cold temperatures observed at the base of the gas hydrate stability zone on the US Atlantic passive margin, Geology, 25, 699702, 1997.
  • Sloan, E. D., Clathrate Hydrates of Natural Gases, Marcel Dekker, New York, 1990.
  • Valentine, D. L., and W. S. Reeburgh, New perspectives on anaerobic methane oxidation, Environ. Microbiol., 2, 477484, 2000.
  • Wellsbury, P., K. Goodman, T. Barth, B. A. Cragg, S. P. Barnes, and R. J. Parkes, Deep marine biosphere fuelled by increasing organic matter availability during burial and heating, Nature, 388, 573576, 1997.
  • Xu, W., and C. Ruppel, Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments, J. Geophys. Res., 104, 50815095, 1999.
  • Zatsepina, O. Y., and B. A. Buffett, Phase equilibrium of gas hydrate: Implications for the formation of hydrate in the deep sea floor, Geophys. Res. Lett., 24, 15671570, 1997.
  • Zatsepina, O. Y., and B. A. Buffett, Experimental study of the stability of CO2 hydrate in a porous medium, Fluid Phase Equilib., 192, 85102, 2001.