SEARCH

SEARCH BY CITATION

References

  • Albrecht, O., Dynamics of glaciers and ice sheets: A numerical model study, Ph.D. thesis, Swiss Fed. Inst. of Technol., Zurich, 2000.
  • Baral, D., K. Hutter, and R. Greve, Asymptotic theories of large-scale motion, temperature, and moisture distribution in land-based polythermal ice sheets: a critical review and new developments, Appl. Mech. Rev., 54, 215256, 2001.
  • Blatter, H., Velocity and stress fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333344, 1995.
  • Blatter, H., G. Clarke, and J. Colinge, Stress and velocity fields in glaciers: Part II. sliding and basal stress distribution, J. Glaciol., 44, 457466, 1998.
  • Budd, W., The longitudinal stress and strain-rate gradients in ice masses, J. Glaciol., 9, 1927, 1970a.
  • Budd, W., Ice flow over bedrock perturbations, J. Glaciol., 9, 2948, 1970b.
  • Budd, W., Stress variations with ice flow over undulations, J. Glaciol., 10, 177195, 1971.
  • Colinge, J., and H. Blatter, Stress and velocity fields in glaciers: part I. finite-difference schemes for higher-order glacier models, J. Glaciol., 44, 448456, 1998.
  • Dahl-Jensen, D., Steady thermomechanical flow along two-dimensional flow lines in large grounded ice sheets, J. Geophys. Res., 94, 10,35510,362, 1989.
  • Dansgaard, W., and S. Johnsen, A flow model and a time scale for the ice core for Camp Century, Greenland, J. Glaciol., 8, 215223, 1969.
  • Greve, R., Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios, J. Clim., 10, 901918, 1997.
  • Hindmarsh, R., Influence of channelling on heating in ice-sheet flows, Geophys. Res. Lett., 28, 36813684, 2001.
  • Hindmarsh, R., and A. Payne, Time-step limits for stable solutions of the ice-sheet equation, Ann. Glaciol., 23, 7485, 1996.
  • Hooke, R., Flow law for polycrystalline ice in glaciers: Comparison of theoretical predictions, laboratory data, and field measurements, Rev. Geophys., 19, 664672, 1981.
  • Hutter, K., Theoretical Glaciology, Kluwer Acad., Norwell, Mass., 1983.
  • Huybrechts, P., A 3-D model for the Antarctic ice sheet: A sensitivity study on the glacial-interglacial contrast, Clim. Dyn., 5, 7992, 1990.
  • Huybrechts, P., and T. Payne, The EISMINT benchmarks for testing ice-sheet models, Ann. Glaciol., 23, 112, 1996.
  • Kwok, R., M. Siegert, and F. Carsey, Ice motion over Lake Vostok, Antarctica: Constraints on inferences regarding the accreted ice, J. Glaciol., 46, 689694, 2000.
  • Lliboutry, L. A., Very Slow Flows of Solids, Martinus Nijhoff, Zoetermeer, Netherlands, 1987.
  • Marshall, S., and G. Clarke, A continuum mixture model of ice stream thermomechanics in the Laurentide ice sheet: 1. Theory, J. Geophys. Res., 102, 20,59920,614, 1997.
  • Mayer, C., Numerische Modellierung der Übergangszone zwischen Eisschild und Shelfeis (numerical modelling of the transition zone between an ice sheet and an ice shelf), Ber. Polarforsch., 214, 1150, 1996.
  • Mayer, C., and M. Siegert, Numerical modelling of ice-sheet dynamics across the Vostok subglacial lake, central East Antarctica, J. Glaciol., 46, 197205, 2000.
  • Paterson, W., The Physics of Glaciers, 3rd ed., Oxford, Pergamon, Tarrytown, N.J., 1994.
  • Pattyn, F., Ice-sheet modelling at different spatial resolutions: Focus on the grounding line, Ann. Glaciol., 31, 211216, 2000.
  • Pattyn, F., Transient glacier response with a higher-order numerical ice-flow model, J. Glaciol., 48, 467477, 2002a.
  • Pattyn, F., Ice-flow characteristics over a rough bedrock: Implications for ice-core interpretation, Polar Meteorol. Glaciol., 16, 4252, 2002b.
  • Payne, A., et al., Results from the EISMINT model intercomparsion: The effects of thermomechanical coupling, J. Glaciol., 46, 227238, 2000.
  • Press, W., S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., Cambridge Univ. Press, New York, 1992.
  • Raymond, C., Deformation in the vicinity of ice divides, J. Glaciol., 29, 357373, 1983.
  • Ritz, C., A. Fabre, and A. Letréguilly, Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: Consequences for the evolution through the last glacial cycle, Clim. Dyn., 13, 1124, 1997.
  • Saito, F., Development of a three dimensional ice sheet model for numerical studies of Antarctic and Greenland ice sheet, Ph.D. thesis, Univ. of Tokyo, Tokyo, 2002.
  • Saito, F., A. Abe-Ouchi, and H. Blatter, Effects of the first order stress gradients to an ice sheet evaluated by a three-dimensional thermo-mechanical coupled model, Ann. Glaciol., 37, in press, 2003.
  • Schøtt Hvidberg, C., Steady-state thermomechanical modelling of ice flow near the centre of large ice sheets with the finite- element method, Ann. Glaciol., 23, 116123, 1996.
  • Siegert, M., and J. Ridley, An analysis of the ice-sheet surface and subsurface topography above the Vostok Station subglacial lake, central East Antarctica, J. Geophys. Res., 103, 10,19510,207, 1998.
  • Siegert, M., R. Kwok, C. Mayer, and B. Hubbard, Water exchange between the subglacial Lake Vostok and the overlying ice sheet, Nature, 403, 643646, 2000.
  • Van der Veen, C., Longitudinal stresses and basal sliding: A comparative study, in Dynamics of the West Antarctic Ice Sheet, edited by C. Van der Veen, and J. Oerlemans, pp. 223248, Kluwer Acad., Norwell, Mass., 1987.
  • Van der Veen, C., A numerical scheme for calculating stresses and strain rates in glaciers, Math. Geol., 21, 363377, 1989.
  • Van der Veen, C., and I. Whillans, Force budget: I. theory and numerical methods, J. Glaciol., 35, 5360, 1989.
  • Whillans, I., and C. Van der Veen, The role of lateral drag in the dynamics of Ice Stream B, Antarctica, J. Glaciol., 43, 231237, 1997.