SEARCH

SEARCH BY CITATION

References

  • Beljaars, A. C. M., and A. K. Betts, Validation of the boundary layer representation in the ECMWF model, in ECMWF Seminar Proceedings, 7–11 Sept. 1992, Validation of Models Over Europe, vol. II, pp. 159195, Eur. Cent. for Med.-Range Weather Forecasting, Reading, UK, 1993.
  • Betts, A. K., Idealized model for equilibrium boundary layer over land, J. Hydrometeorol., 1, 507523, 2000.
  • Betts, A. K., and C. Jakob, Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data, J. Geophys. Res., 107(D20), 8045, doi:10.1029/2001JD000427, 2002.
  • Betts, A. K., and M. J. Miller, A new convective adjustment scheme, II, Single column tests using GATE-wave, BOMEX, ATEX, and Arctic airmass data sets, Q.J.R. Meteorol. Soc., 112, 693710, 1986.
  • Betts, A. K., and P. Viterbo, Basin-scale hydrologic budgets from ERA-40 for the Mississippi, Mackenzie and Amazon rivers, paper presented at 16th Conference On Hydrology, Am. Meteorol. Soc., Orlando, Fla., 14–17 Jan., 2002.
  • Betts, A. K., P. Viterbo, and E. Wood, Surface energy and water balance for the Arkansas-Red river basin from the ECMWF reanalysis, J. Clim., 11, 28812897, 1998.
  • Betts, A. K., J. H. Ball, and P. Viterbo, Basin-scale surface water and energy budgets for the Mississippi from the ECMWF reanalysis, J. Geophys. Res., 104, 19,29319,306, 1999.
  • Betts, A. K., J. Fuentes, M. Garstang, and J. H. Ball, Surface diurnal cycle and boundary layer structure over Rondônia during the rainy season, J. Geophys. Res., 107(D20), 8065, doi:10.1029/2001JD000356, 2002.
  • Emanuel, K. A., and D. J. Raymond, The Representation of Cumulus Convection in Numerical Models, Meteorol. Monogr., 24, no. 46, Am. Meteorol. Soc., Boston, Mass., 1993.
  • Ghan, S., et al., A comparison of single column model simulations of summertime midlatitude continental convection, J. Geophys. Res., 105, 20912124, 2000.
  • Greco, S., R. Swap, M. Garstang, S. Ulanski, M. Shipman, R. C. Harriss, R. Talbot, M. O. Andreae, and P. Artaxo, Rainfall and surface kinematic conditions over central Amazonia during ABLE 2B, J. Geophys. Res., 95, 17,00117,014, 1990.
  • Gregory, D., J.-J. Morcrette, C. Jakob, A. C. M. Beljaars, and T. Stockdale, Revision of convection, radiation and cloud schemes in the ECMWF integrated forecast system, Q.J.R. Meteorol. Soc., 126, 16851710, 2000.
  • Halverson, J. B., T. Rickenbach, B. Roy, H. Pierce, and E. Williams, Environmental characteristics of convective systems during TRMM-LBA, Mon. Weather Rev., 130, 14931509, 2002.
  • Holtslag, A. A. M., and B. A. Boville, Local versus non-local boundary layer diffusion, J. Clim., 6, 18251842, 1993.
  • Kuo, H. L., On formation and intensification of tropical cyclones through latent heat release by cumulus convection, J. Atmos Sci., 22, 4063, 1965.
  • Liu, Y., D.-L. Zhang, and M.K. Yau, A multiscale numerical simulation on hurricane Andrew (1992), I Explicit simulation and verification, Mon. Weather Rev., 125, 30733093, 1997.
  • Manabe, S., and R. Strickler, Thermal equilibrium of the atmosphere with a convective adjustment, J. Atmos Sci., 21, 361385, 1965.
  • Negri, A. J., L. Xu, and R. F. Adler, A TRMM-calibrated infrared rainfall algorithm applied over Brazil, J. Geophys. Res., 107(D20), 8048, doi:10.1029/2000JD000265, 2002.
  • Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge, TRMM observations of intraseasonal variability in convective regimes over the Amazon, J. Clim., 15, 12781294, 2002.
  • Randall, D. A., K.-M. Xu, R. J. C. Somerville, and S. Iacobellis, Single-column models and cloud ensemble models as links between observations and climate models, J. Clim., 9, 16831697, 1996.
  • Randall, D. A., J. Curry, P. Duynkerke, S. Krueger, M. Moncrieff, B. Ryan, D. Starr, M. Miller, W. Rossow, G. Tselioudis, and B. Wielicki, Confronting models with data: The GEWEX cloud systems study, Bull. Am. Meteorol. Soc., in press, 2002.
  • Rutledge, S. A., W. A. Petersen, R. C. Cifelli, and L. D. Carey, Early results from TRMM-LBA: Kinematic and microphysical characteristics of convection in distinct meteorological regimes, paper presented at 24th Conference on Hurricanes and Tropical Meteorology, Am Meteorol. Soc., Ft. Lauderdale, Fla., 29 May to 2 June 2000.
  • Silva Dias, M. A. F., et al., Clouds and rain processes in a biosphere atmosphere interaction context in the Amazon Region, J. Geophys. Res., 107(D20), 8072, doi:10.1029/2001JD000335, 2002.
  • Stendel, M., and K. Arpe, Evaluation of the hydrological cycle in reanalyses and observations, ECMWF Reanalysis (ERA-15) Proj. Rep. Ser., 6, Eur. Cent. For Medium-Range Weather Forecasts, Reading, UK, 1997.
  • Sud, Y. C., D. M. Mocko, G. K. Walker, and R. D. Koster, Influence of land surface fluxes on precipitation: Inferences from simulations forced with four ARM-CART SCM datasets, J. Clim., 14, 36663691, 2001.
  • Tiedtke, M., A comprehensive mass flux scheme for cumulus parametrization in large-scale models, Mon. Weather Rev., 117, 17791800, 1989.
  • Van den Hurk, B. J. J. M., P. Viterbo, A. C. M. Beljaars, and A. K. Betts, Offline validation of the ERA40 surface scheme, ECMWF Tech. Memo, 295, 43 pp., Eur. Cent. for Medium-Range Weather Forecasts, Reading, UK, 2000.
  • Viterbo, P., and A. C. M. Beljaars, An improved land-surface parameterization in the ECMWF model and its validation, J. Clim., 8, 27162748, 1995.
  • Wu, X., and M. W. Moncrieff, Sensitivity of single-column models to convective parameterizations and initial conditions, J. Clim., 14, 25632582, 2001.
  • Zhang, G. J., and N. A. McFarlane, Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model, Atmos. Ocean, 33, 407446, 1995.