• Arakawa, A., and W. H. Schubert, Interaction of a cumulus cloud ensemble with the large-scale environment Part I, J. Atmos. Sci., 31, 674701, 1974.
  • Cess, R. D., et al., Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models, J. Geophys. Res., 95, 16,60116,615, 1990.
  • Clothiaux, E. E., et al., The ARM Millimeter Wave Cloud Radars (MMCRs) and the Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP), 56 pp., DOE Tech. Memo. ARM VAP-002.1, 2001.
  • Cubasch, U., et al., Climate change 2001: The scientific basis, in Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, pp. 528582, Cambridge Univ. Press, New York, 2001.
  • Del Genio, A., M.-S. Yao, W. Kovari, and L. W. Lo, A prognostic cloud water parameterization for global climate models, J. Clim., 9, 270304, 1996.
  • Fowler, L., D. A. Randall, and S. A. Rutledge, Liquid and ice cloud microphysics in the CSU general circulation model, I, Model description simulated microphysical processes, J. Clim., 9, 489529, 1996.
  • Ghan, S. J., and R. C. Easter, Computationally efficient approximations to stratiform cloud microphysics parameterization, Mon. Weather Rev., 120, 15721582, 1992.
  • Hack, J. J., and J. A. Pedretti, Assessment of solution uncertainties in single-column model frameworks, J. Clim., 13, 352356, 2000.
  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, Description of the NCAR Community Climate Model (CCM3), NCAR Tech. Note NCAR/TN-420+STR, 151 pp., Natl. Cent. for Atmos. Res., Boulder, Colo., 1996.
  • Le Treut, H., and Z. X. Li, Using Meteosat data to validate a prognostic cloud water scheme, Atmos. Res., 21, 273292, 1988.
  • Mitchell, J. F. B., and W. J. Ingram, Carbon dioxide and climate: Mechanisms of changes in cloud, J. Clim., 5, 521, 1992.
  • Randall, D. A., and L. D. Fowler, Eauliq: The next generation, Atmos. Sci. Pap. 673, 65 pp., Colo. State Univ., Boulder, Colo., 2001.
  • Rasch, P. J., and J. E. Kristjànsson, A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations, J. Clim., 11, 15871614, 1998.
  • Slingo, J. M., The development and verification of a cloud prediction scheme for the ECMWF model, Q. J. R. Meteorol. Soc., 113, 899927, 1987.
  • Smith, R. N. B., A scheme for predicting layer clouds and their water content in a general circulation model, Q. J. R. Meteorol. Soc., 116, 435460, 1990.
  • Somerville, R. C. J., and L. A. Remer, Cloud optical thickness feedbacks in the CO2 climate problem, J. Geophys. Res., 89, 96689672, 1984.
  • Sundqvist, H., A parameterization scheme for nonconvective condensation including prediction of cloud water content, Q. J. R. Meteorol. Soc., 104, 677690, 1978.
  • Sundqvist, H., E. Berge, and J. E. Kristjànsson, Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model, Mon. Weather Rev., 117, 16411657, 1989.
  • Tiedtke, M., Representation of clouds in large-scale models, Mon. Weather Rev., 121, 30403061, 1993.
  • Xie, P., and P. A. Arkin, Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bull. Am. Meteorol. Soc., 78(11), 25392558, 1997.
  • Xie, S. C., and M. H. Zhang, Impact of the convection triggering function on single-column model simulations, J. Geophys. Res., 105, 14,98314,996, 2000.
  • Zhang, G. J., and N. A. McFarlane, Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model, Atmos. Ocean, 33, 407446, 1995.
  • Zhang, M. H., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie, Objective analysis of the ARM IOP data: Method and sensitivity, Mon. Weather Rev., 129, 295311, 2001.
  • Zhao, Q., T. L. Black, and M. E. Baldwin, Implementation of the cloud prediction Scheme in the Eta Model at NCEP, Weather Forecast., 12(3), 697712, 1997.