SEARCH

SEARCH BY CITATION

References

  • Århus, N., The transition from deposition of condensed carbonates to dark claystones in the Lower Cretaceous succession of the southwestern Barents Sea, Nor. Geol. Tidsskr., 71, 259263, 1991.
  • Århus, N., T. Bugge, G. Elvebakk, V. Fjerdingstad, T. L. Leith, A. Mørk, H. Rendall, O. Skarbø, and H. M. Weiss, Report of Shallow drilling Elf Aquitaine, Norsk Hydro, Statoil Barents Sea, 50 pp., IKU, Trondheim, 1987.
  • Arthur, M. A., W. E. Dean, and G. E. Claypool, Anomalous 13C enrichment in modern marine organic carbon, Nature, 315, 216218, 1985.
  • Arthur, M. A., S. O. Schlanger, and H. C. Jenkyns, The Cenomanian-Turonian oceanic anoxic event, II: Palaeoceanographic controls on organic-matter production and preservation, Geol. Soc. Spec. Publ., 26, 401420, 1987.
  • Berner, R. A., Sedimentary pyrite formation: An update, Geochim. Cosmochim. Acta, 48, 605615, 1984.
  • Berner, R. A., and R. Raiswell, Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory, Geochim. Cosmochim. Acta, 47, 855862, 1983.
  • Boyd, P. W., et al., A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407, 695702, 2000.
  • Bralower, T. J., and H. R. Thierstein, Organic carbon accumulation rates in Holocene and mid-Cretaceous sediments: Paleoceanographic significance, Geol. Soc. Spec. Publ., 26, 345369, 1987.
  • Brekke, H. D., S. Dahlgren, B. Nyland, and C. Magnus, The prospectivity of the Vøring and Møre basins on the Norwegian Sea continental margin, in Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference, edited by A. J. Fleet, and S. A. R. Boldy, pp. 261274, Geol. Soc., London, 1999.
  • Brumsack, H. J., Geochemistry of Cretaceous black shales from the Atlantic Ocean, Chem. Geol., 31, 125, 1980.
  • Brumsack, H. J., Rezente Corg-reiche Sedimente als Schlüssel zum Verständnis fossiler Schwarzschiefer, Habilitationsschrift, Univ. of Göttingen, Göttingen, 1988.
  • Bugge, T., et al., Report of Shallow Drilling Barents Sea 1988, 309 pp., IKU, Trondheim, 1989.
  • Bugge, T., G. Elvebakk, S. Fanavoll, G. Mangerud, M. Smelror, H. M. Weiss, J. Gjelberg, S. E. Kristensen, and K. Nilsen, Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin, Barents Sea, Mar. Petrol. Geol., 19, 1337, 2002.
  • Calvert, S. E., and T. F. Pedersen, Organic carbon accumulation and preservation in marine sediments: How important is anoxia? in Organic Matter: Productivity, Accumulation, and Preservation in Recent and Ancient Sediments, edited by J. K. Whelan, and J. W. Farrington, 533 pp., Columbia Univ. Press, New York, 1992.
  • Caplan, M. L., and R. M. Bustin, Paleoceanographic controls on geochemical characteristics of organic-rich Exshaw mudrocks: Role of enhanced primary production, Organic Geochem., 30, 161188, 1998.
  • Coplen, T. B., Reporting of stable carbon, hydrogen, and oxygen isotopic abundance, in IAEA-TECDOC-825, Reference and Intercomparison Materials for Stable Isotopes of Light Elements, pp. 3134, Int. At. Energy Assoc., Vienna, 1995.
  • Cornford, C., P. Gardner, and C. Burgess, Geochemical truths in large data sets, I: Geochemical screening data, Organic Geochem., 29(1–3), 519530, 1998.
  • Dean, W. E., and M. A. Arthur, Iron-sulfur-carbon relationships in organic-carbon-rich sequences: Cretaceous western interior seaway, Am. J. Sci., 289, 708743, 1989.
  • Dean, W. E., M. A. Arthur, and G. E. Claypool, Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental signal? Mar. Geol., 70, 119157, 1986.
  • De Graciansky, P. C., G. Deroo, J. P. Herbin, L. Montadert, C. Müller, A. Schaaf, and J. Sigal, Oceanwide stagnation episode in the late Cretaceous, Nature, 308, 346349, 1984.
  • De Graciansky, P. C., E. Brosse, G. Deroo, J.-P. Herbin, L. Montadert, C. Müller, J. Sigal, and A. Schaaf, Organic-rich sediments and palaeoenvironmetal reconstructions of the Cretaceous North Atlantic, Geol. Soc. Spec. Publ., 26, 317344, 1987.
  • Demaison, G. J., and G. T. Moore, Anoxic environments and oil source bed genesis, Organic Geochem., 2, 931, 1980.
  • Doré, A. G., The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic, Palaeogeogr. Palaeoclimatol. Palaeoecol., 87, 441492, 1991.
  • Engleman, E. E., L. L. Jackson, and D. R. Norton, Determination of carbonate in geological materials by coulometric titration, Chem. Geol., 53, 125128, 1985.
  • Espitalié, J., J. L. Laporte, M. Madec, F. Marquis, P. Leplat, J. Paulet, and A. Boutefeu, Méthode rapide de characterisation des roches-mere, de leur potential petrolier et de leur degre d'evolution, Rev. Inst. Fr. Pet., 32, 2342, 1977.
  • France-Lanord, C., and L. A. Derry, δ13C of organic carbon in the Bengal Fan: Source evolution and transport of C3 and C4 plant carbon to marine sediments, Geochim. Cosmochim. Acta, 58(21), 48094814, 1994.
  • Fry, B., W. Brand, F. J. Mersch, K. Tholke, and R. Garritt, Automated analysis system for coupled δ13C and δ15N measurements, Anal. Chem., 64, 288291, 1992.
  • Hallam, A., Mesozoic organic-rich shales, Geol. Soc. Spec. Publ., 26, 251261, 1987.
  • Hansen, J. W., et al., Shallow Drilling Nordland VI and VII 1991, 390 pp., IKU, Trondheim, 1991.
  • Haq, B. U., J. Hardenbol, and P. R. Vail, Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in Sea Level Changes: An Integrated Approach, SEPM Spec. Publ., vol. 42, edited by C. K. Wilgus et al., pp. 71108, SEPM, location, 1988.
  • Hardenbol, J., J. Thierry, M. B. Farley, T. Jacquin, P. C. de Graciansky, and P. R. Vail, Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins, Soc. Sediment. Geol. Spec. Publ., 60, 714, 1998.
  • Hay, W. W., et al., Alternative global Cretaceous paleogeography, in Evolution of the Cretaceous Ocean-Climate System, edited by E. Barrera, and C. Johnson, pp. 147, Geol. Soc. Am., Boulder, Colo., 1999.
  • Hinrichs, J., B. Schnetger, H. Schale, and H.-J. Brumsack, A high resolution study of NE Atlantic sediments at station Bengal: Geochemistry and early diagenesis of Heinrich layers, Mar. Geol., 177, 7992, 2001.
  • Hofmann, P., W. Ricken, L. Schwark, and D. Leythaeuser, Carbon-sulfur-iron relationships and δ13C of organic matter for late Albian sedimentary rocks from the North Atlantic Ocean: Paleoceanographic implications, Palaeoceanogr. Palaeoclimatol. Palaeoecol., 163, 97113, 2000.
  • Horsfield, B., et al., Organic geochemistry of freshwater and alkaline lacustrine sediments in the Green River Formation of the Washakie Basin, Wyoming, USA, Organic Geochem., 22, 415440, 1994.
  • Huffman, E. W. D.Jr., Performances on a new automatic carbon dioxide coulometer, Microchem. J., 22, 567573, 1977.
  • Izdar, E., T. Konuk, V. Ittekkot, S. Kempe, and E. T. Degens, Particle flux in the Black Sea: Nature of the organic matter, in Particle Flux in the Ocean, vol. 62, edited by E. T. Degens et al., pp. 118, Mitt. des Geol. Paläontol. Inst. der Univ. Hamburg, Hamburg, 1983.
  • Langford, F. F., and M. M. Blanc-Valleron, Interpreting rock-eval-pyrolysis data using graphs of pyrolysable hydrocarbons vs. total organic carbon, AAPG Bull., 74, 799804, 1990.
  • Langrock, U., and R. Stein, Organic matter preservation and paleoenvironmental implications for Lower Cretaceous marine sapropels from the Norwegian and Barents Sea shelf, abstract presented at the EUG XI Conference, J. Conf. Abstr., 6(1), 196197, 2001.
  • Langrock, U., R. Stein, M. Lipinski, and H.-J. Brumsack, Paleoenvironment and sea-level change in the early Cretaceous Barents Sea—Implications from near-shore marine sapropels, Geo. Mar. Lett., in press, 2003.
  • Larson, R. L., Geological consequences of superplumes, Geology, 19, 963966, 1991.
  • Leith, T. L., et al., Mesozoic hydrocarbon source-rocks of the Arctic region, in Arctic Geology and Petroleum Potential, Norw. Petrol. Soc. Spec. Publ., vol. 2, edited by T. O. Vorren et al., pp. 125, 1992.
  • Lippard, S., and K. Rokoengen, Shallow drilling Farsund Subbasin 1988/89: Bedrock mapping and evaluation of potential coring sites, Rep. 21.3460.00/01.89, 47 pp., IKU, Trondheim, 1989.
  • Lückge, A. B., M. Lallier-Vergès, and R. Littke, Comparative study of organic matter preservation in immature sediments along the continental margins of Peru and Oman, part I: Results of petrographical and bulk geochemical data, Organic Geochem., 24(4), 437451, 1996.
  • Lüniger, G., and L. Schwark, Characterization of sedimentary organic matter by bulk and molecular geochemical proxies: An example from an Oligocene maar-type Lake Enspel, Germany, Sediment. Geol., 148(1–2), 275288, 2002.
  • Meyers, P. A., Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes, Organic Geochem., 27, 213250, 1997.
  • Müller, P. J., and E. Suess, Productivity, sedimentation rate and sedimentary organic carbon in the oceans, 1: Organic carbon preservation, Deep Sea Res., Part I, 26, 13471362, 1979.
  • Mutterlose, J., et al., The Greenland-Norwegian Seaway: A key area for understanding Late Jurassic to Early Cretaceous paleoenvironments, Paleoceanography, 18(1), 1010, doi:10.1029/2001PA000625, 2003.
  • Nijenhuis, I. A., H.-J. Bosch, J. S. Sinninghe Damsté, H.-J. Brumsack, and G. J. De Lange, Organic matter and trace element rich sapropels and black shales: A geochemical comparison, Earth Planet. Sci. Lett., 169, 277290, 1999.
  • Onstad, D. G., D. E. Canfield, P. D. Quay, and J. Hedges, Sources of particulate organic matter in rivers from the continental USA: Lignin phenol and stable isotope composition, Geochim. Cosmochim. Acta, 64(20), 35393546, 2000.
  • Pedersen, T. F., and S. E. Calvert, Anoxia versus productivity: What controls the formation of organic carbon-rich sediments and sedimentary rocks? AAPG Bull., 74(4), 454466, 1990.
  • Peters, K. E., Guidelines for evaluating petroleum source rock using programmed pyrolysis, AAPG Bull., 70(3), 318329, 1986.
  • Poelchau, H. S., D. R. Baker, T. Hantschel, B. Horsfield, and B. Wygrala, Basin simulation and the design of the conceptual basin model, in Petroleum and Basin Evolution, edited by D. H. Welte et al., pp. 370, Springer-Verlag, New York, 1997.
  • Rau, G. H., M. A. Arthur, and W. E. Dean, 15N/14N variations in Cretaceous Atlantic sedimentary sequences: Implications for past changes in marine nitrogen biogeochemistry, Earth Planet. Sci. Lett., 82, 269279, 1987.
  • Röhl, H.-J., A. Schmid-Röhl, W. Oschmann, A. Frimmel, and L. Schwark, The Posidonia Shale (Lower Toarcian) of SW Germany: An oxygen-depleted ecosystem controlled by sea level and paleoclimate, Palaeogeogr. Paleoclimatol. Paleoecol., 165, 2752, 2001.
  • Rokoengen, K., S. Lippard, R. Morgensen, and L. Rise, Nearshore bedrock mapping 62°–57°30′N, Rep. 24.1486/01/88, 62 pp., IKU, Trondheim, 1988.
  • Routh, J., T. J. McDonald, and E. L. Grossman, Sedimentary organic matter sources and depositional environment in the Yegua formation (Brazos County, Texas), Organic Geochem., 30, 14371453, 1999.
  • Saelen, G., R. V. Tyson, N. Telnaes, and M. R. Talbot, Contrasting watermass conditions during deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic) formations, UK, Palaeogeogr. Palaeoclimatol. Palaeoecol., 163, 163196, 2000.
  • Schlanger, S. O., and H. C. Jenkyns, Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw, 55, 179184, 1976.
  • Schlanger, S. O., M. A. Arthur, H. C. Jenkyns, and P. A. Scholle, The Cenomanian-Turonian oceanic anoxic event, I: Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion, Geol. Soc. Spec. Publ., 26, 371399, 1987.
  • Schouten, S., M. Schoell, W. I. C. Rijpstra, J. S. Sinninghe Damsté, and J. W. De Leeuw, A molecular stable carbon isotope study of organic matter in immature Miocene Monterey sediments, Pismo basin, Geochim. Cosmochim. Acta, 61(10), 20652082, 1997.
  • Sheridan, R. E., Pulsation tectonics as the control of North Atlantic palaeoceanography, Geol. Soc. Spec. Publ., 21, 255275, 1987.
  • Sinninghe Damsté, J. S., and J. Köster, An euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event, Earth Planet. Sci. Lett., 158, 165173, 1998.
  • Smelror, M., A. Mørk, E. Monteil, D. Rutledge, and H. Leereveld, The Klippfisk Formation—A new lithostratigraphic unit of Lower Cretaceous platform carbonates on the Western Barents Shelf, Polar Res., 17, 181202, 1998.
  • Smelror, M., A. Mørk, M. B. E. Mørk, H. M. Weiss, and H. Løseth, Middle Jurassic-Lower Cretaceous transgressive-regressive sequences and facies distribution off Troms, northern Norway, in Sedimentary Environments Offshore Norway—Palaeozoic to Recent, NPF Spec. Publ., vol. 10, edited by O. J. Martinsen, and T. Dreyer, pp. 211232, Norw. Petrol. Soc., Oslo, 2001a.
  • Smelror, M., H. Dypvik, and A. Mork, Cretaceous boundary beds of the Barents Sea possibly induced by the Mjolnir meteorite impact, in Geological and Biological Effects of Impact Events: Impact Studies, edited by E. Buffetaut, and C. Koeberl, pp. 6982, Springer-Verlag, New York, 2001b.
  • Stein, R., Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments, Geo. Mar. Lett., 10, 3744, 1990.
  • Stein, R., J. Rullkötter, and D. H. Welte, Accumulation of organic-carbon-rich sediments in the Late Jurassic and Cretaceous Atlantic Ocean—A synthesis, Chem. Geol., 56, 132, 1986.
  • Taylor, G. H., M. Teichmüller, A. Davies, C. F. K. Diessel, R. Littke, and P. Robert (Eds.), Organic Petrology, 704 pp., Gebrüder Bornträger, Berlin, 1998.
  • Tribovillard, N., A. Bialkowski, R. V. Tyson, E. Lallier-Vergès, and J.-F. Deconinck, Organic facies variation in the late Kimmeridgian of the Boulonnais area (northernmost France), Mar. Petrol. Geol., 18, 371389, 2001.
  • Twichell, S. C., P. A. Meyers, and L. Diester-Haass, Significance of high C/N ratios in organic-carbon-rich Neogene sediments under the Beguela Current upwelling system, Organic Geochem., 33, 715722, 2002.
  • Van de Schootbrugge, B., K. B. Föllmi, L. G. Bulot, and S. J. Burns, Paleoceanographic changes during the early Cretaceous (Valanginian-Hauterivian): Evidence from oxygen and carbon stable isotopes, Earth Planet. Sci. Lett., 181, 1531, 2000.
  • Wilkin, R. T., H. L. Barnes, and S. L. Brantley, The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions, Geochim. Cosmochim. Acta, 60, 38973912, 1996.
  • Wilkin, R. T., M. A. Arthur, and W. E. Dean, History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions, Earth Planet. Sci. Lett., 148, 517525, 1997.
  • Worsley, D., R. Johansen, and S. E. Kristensen, The Mesozoic and Cenozoic succession of Tromsøflaket, Norw. Petr. Direct. Bull., 4, 4265, 1988.
  • Ziegler, P. A., (Ed.), Evolution of the Arctic-North Atlantic and the Western Tethys, AAPG Mem., vol. 43, 198 pp., Am. Assoc. of Petrol. Geol., Tulsa, Okla., 1988.