SEARCH

SEARCH BY CITATION

References

  • Arakawa, A., and V. R. Lamb (1977), Computational design of basic dynamical processes of the UCLA general circulation model, Methods Comput. Phys., 17, 173265.
  • Auer, S. J. (1987), Five-year climatological survey of the Gulf Stream system and its associated rings, J. Geophys. Res., 92, 11,70911,726.
  • Bane, J. M., and W. K. Dewar (1988), Gulf Stream bimodality and variability downstream of the Charleston Bump, J. Geophys. Res., 93, 66956710.
  • Barenblatt, G. L. (1987), Dimensional Analysis, Gordon and Breach, New York.
  • Beckmann, A. C. W., C. W. Böning, J. Köberle, and J. Willebrand (1994), Effects of increased horizontal resolution in a simulation of the North-Atlantic Ocean, J. Phys. Oceanogr., 24, 326344.
  • Berloff, P. S., and J. C. McWilliams (1999), Large-scale, low-frequency variability in wind-driven ocean gyres, J. Phys. Oceanogr., 29, 19251949.
  • Berloff, P. S., and S. P. Meacham (1997), The dynamics of an equivalent barotropic model of the wind-driven circulation, J. Mar. Res., 55, 407451.
  • Berloff, P. S., and S. P. Meacham (1998), On the stability of the wind-driven circulation, J. Mar. Res., 56, 937993.
  • Bjerknes, J. P. (1969), Atmospheric teleconnections from the equatorial Pacific, Mon. Weather Rev., 97, 163172.
  • Boiseau, M., M. Ghil, and A. Juillet-Leclerc (1999), Trends and interdecadal variability from south-central Pacific coral records, Geophys. Res. Lett., 26, 28812884.
  • Bond, G., et al. (1995), A pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climates, Science, 278, 12571265.
  • Bradley, R. S. (1999), Paleoclimatology: Reconstructing Climates of the Quaternary, Elsevier, New York.
  • Broecker, W. S. (1991), The great ocean conveyor, Oceanography, 4, 7989.
  • Broecker, W. S., and J. Van Donk (1970), Insolation changes, ice volumes, and the δ18O record in deep-sea cores, Rev. Geophys., 8, 169197.
  • Broecker, W. S., D. M. Peteet, and D. Rind (1985), Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315, 2126.
  • Brugge, B. (1995), Near surface mean circulation and eddy kinetic energy in the central North Atlantic from drifter data, J. Geophys. Res., 100, 20,54320,554.
  • Bryan, F. O. (1986), High-latitude salinity effects and interhemispheric thermohaline circulations, Nature, 323, 301304.
  • Bryan, F. O., C. W. Böning, and W. R. Holland (1995), On the midlatitude circulation in a high-resolution model of the North Atlantic, J. Phys. Oceanogr., 25, 289305.
  • Bryan, K., S. Manabe, and R. C. Pacanowski (1974), A global ocean-atmosphere climate model. part II: The oceanic circulation, J. Phys. Oceanogr., 5, 3046.
  • Bryden, H. L., D. Roemmich, and J. Church (1991), Heat transport across 24°N in the Pacific, Deep Sea Res., Part A, 38, 297324.
  • Bryden, H. L., M. J. Griffiths, A. M. Lavin, R. C. Millard, G. Parilla, and W. M. Smethie (1996), Decadal changes in water mass characteristics at 24°N in the subtropical North Atlantic Ocean, J. Clim., 9, 31623186.
  • Cane, M. A., and S. E. Zebiak (1985), A theory for El Niño and the Southern Oscillation, Science, 228, 10841087.
  • Cessi, P., and G. R. Ierley (1995), Symmetry-breaking multiple equilibria in quasi-geostrophic, wind-driven flows, J. Phys. Oceanogr., 25, 11961205.
  • Cessi, P., and W. R. Young (1992), Multiple equilibria in two-dimensional thermohaline circulation, J. Fluid Mech., 241, 291309.
  • Chang, K.-I., M. Ghil, K. Ide, and C.-C. A. Lai (2001), Transition to aperiodic variability in a wind-driven double-gyre circulation model, J. Phys. Oceanogr., 31, 12601286.
  • Chao, Y., A. Gangopadhyay, F. O. Bryan, and W. R. Holland (1996), Modeling the Gulf Stream system: How far from reality? Geophys. Res. Lett., 23, 31553158.
  • Charney, J., and J. DeVore (1979), Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., 36, 12051216.
  • Chassignet, E. P., and R. Bleck (1993), The influence of layer outcropping on the separation of boundary currents. part I: The wind-driven experiments, J. Phys. Oceanogr., 23, 14851507.
  • Chassignet, E. P., et al. (2000), DAMEE-NAB: The base experiments, Dyn. Atmos. Oceans, 32, 155183.
  • Chelton, D. B., and M. Schlax (1996), Global observations of oceanic Rossby waves, Science, 272, 234238.
  • Chen, F., and M. Ghil (1995), Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes, J. Phys. Oceanogr., 22, 161167.
  • Chen, F., and M. Ghil (1996), Interdecadal variability in a hybrid coupled ocean-atmosphere model, J. Phys. Oceanogr., 26, 15611578.
  • Colin de Verdière, A. (1988), Buoyancy driven planetary flows, J. Mar. Res., 46, 215265.
  • Colin de Verdière, A., and T. Huck (1999), Baroclinic instability: An oceanic wavemaker for interdecadal variability, J. Phys. Oceanogr., 29, 893910.
  • Cox, M. (1984), A primitive equation, three-dimensional model of the ocean, Tech. Rep. 1, Ocean Group, Geophys. Fluid Dyn. Lab., Princeton, N. J.
  • Cox, M. (1987), An eddy-resolving model of the ventilated thermocline: Time-dependence, J. Phys. Oceanogr., 17, 10441056.
  • Da Costa, E. D., and A. C. Colin de Verdiére (2004), The 7.7 year North Atlantic oscillation, Q. J. R. Meteorol. Soc., 128, 797818.
  • Daley, R. (1991), Atmospheric Data Analysis, Cambridge Univ. Press, New York.
  • Delworth, T. L., and R. G. Greatbatch (2000), Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing, J. Clim., 13, 14811495.
  • Delworth, T. L., and M. E. Mann (2000), Observed and simulated multidecadal variability in the Northern Hemisphere, Clim. Dyn., 16, 661676.
  • Delworth, T. L., S. Manabe, and R. J. Stouffer (1993), Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model, J. Clim., 6, 19932011.
  • Dengg, J., A. Beckmann, and R. Gerdes (1996), The Gulf Stream separation problem, in The Warm Water Sphere of the North Atlantic Ocean, edited by W. A. Kraus, pp. 253290, Gebrüder Borntraeger, Stuttgart, Germany.
  • Deser, C., and M. L. Blackmon (1993), Surface climate variations over the North Atlantic ocean during winter: 1900–1989, J. Clim., 6, 17431753.
  • Dickson, R., and J. Brown (1994), The production of North Atlantic Deep Water, J. Geophys. Res., 99, 12,31912,341.
  • Dickson, R. R., J. Meincke, S. Malmberg, and A. Lee (1988), The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982, Prog. Oceanogr., 20, 103151.
  • Dijkstra, H. A. (2000), Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, Springer, New York.
  • Dijkstra, H. A., and G. Burgers (2002), Fluid mechanics of El Niño variability, Annu. Rev. Fluid Mech., 34, 531558.
  • Dijkstra, H. A., and C. A. Katsman (1997), Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic bifurcation diagrams, Geophys. Astrophys. Fluid Dyn., 85, 195232.
  • Dijkstra, H. A., and M. J. Molemaker (1997), Symmetry breaking and overturning oscillations in thermohaline-driven flows, J. Fluid Mech., 331, 195232.
  • Dijkstra, H. A., and M. J. Molemaker (1999), Imperfections of the North-Atlantic wind-driven ocean circulation: Continental geometry and wind stress shape, J. Mar. Res., 57, 128.
  • Dijkstra, H. A., and J. D. Neelin (1999), Imperfections of the thermohaline circulation: Multiple equilibria and flux-correction, J. Clim., 12, 13821392.
  • Dijkstra, H. A., and J. D. Neelin (2000), Imperfections of the thermohaline circulation: Latitudinal asymmetry versus asymmetric freshwater flux, J. Clim., 13, 366382.
  • Dijkstra, H. A., H. Öksüzoglu, F. W. Wubs, and E. F. F. Botta (2001), A fully implicit model of the three-dimensional thermohaline ocean circulation, J. Comput. Phys., 173, 685715.
  • Doedel, E. J., and L. S. Tuckermann (2000), Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, Springer, New York.
  • Dommenget, D., and M. Latif (2000), Interannual to decadal variability in the tropical Atlantic, J. Clim., 13, 777792.
  • Duplessy, J.-C., and N. J. Shackleton (1985), Response of global deep-water circulation to Earth's climatic change 135,000–107,000 years ago, Nature, 316, 500507.
  • Eady, E. T. (1949), Long waves and cyclone waves, Tellus, 1, 3352.
    Direct Link:
  • Eckmann, J. P., and D. Ruelle (1985), Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617656.
  • England, M. H. (1992), On the formation of Antarctic intermediate and bottom water in ocean general circulation models, J. Phys. Oceanogr., 22, 918926.
  • England, M. H. (1993), Representing the global-scale water masses in ocean general circulations models, J. Phys. Oceanogr., 23, 15231552.
  • Feliks, Y., and M. Ghil (1996), Mixed barotropic-baroclinic eddies growing on an eastward midlatitude jet, Geophys. Astrophys. Fluid Dyn., 82, 137171.
  • Flierl, G. (1978), Models of vertical structure and calibration of two-layer models, Dyn. Atmos. Oceans, 2, 341381.
  • Frankignoul, C., and K. Hasselmann (1977), Stochastic climate models. II: Application to sea-surface temperature anomalies and thermocline variability, Tellus, 29, 289305.
  • Fu, L.-L., and R. E. Cheney (1995), Application of satellite altimetry to ocean circulation studies: 1987–1994, Rev. Geophys., 33, 213224.
  • Fu, L.-L., and R. D. Smith (1996), Global ocean circulation from satellite altimetry and high-resolution computer simulation, Bull. Am. Meteorol. Soc., 77, 26252636.
  • Ganachaud, A., and C. Wunsch (2000), Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data, Nature, 408, 453457.
  • Gangopadhyay, A., P. Cornillon, and D. Watts (1992), A test of the Parsons-Veronis hypothesis on the separation of the Gulf Stream, J. Phys. Oceanogr., 22, 12861301.
  • Ganopolsky, A., S. Rahmstorf, V. Petoukhov, and M. Claussen (2001), Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153158.
  • Gaspar, P., and C. Wunsch (1989), Estimates from altimeter data of barotropic Rossby waves in the northwestern Atlantic Ocean, J. Phys. Oceanogr., 19, 18211844.
  • Gerdes, R., and C. Köberle (1995), On the influence of DSOW in a numerical model of the North Atlantic general circulation, J. Phys. Oceanogr., 25, 26242642.
  • Ghil, M. (1976), Climate stability for a Sellers-type model, J. Atmos. Sci., 33, 320.
  • Ghil, M. (1994), Cryothermodynamics: The chaotic dynamics of paleoclimate, Physica D, 77, 130159.
  • Ghil, M. (2001), Hilbert problems for the geosciences in the 21st century, Nonlinear Proc. Geophys., 8, 211222.
  • Ghil, M. (2002), Natural climate variability, in Encyclopedia of Global Environmental Change, vol. 1, edited by T. E. Munn, M. MacCracken, and J. Perry, pp. 544549, John Wiley, Hoboken, N. J.
  • Ghil, M., and S. Childress (1987), Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics, Springer, New York.
  • Ghil, M., and P. Malanotte-Rizzoli (1991), Data assimilation in meteorology and oceanography, Adv. Geophys., 33, 141266.
  • Ghil, M., and A. W. Robertson (2000), Solving problems with GCMs: General circulation models and their role in the climate modeling hierarchy, in General Circulation Model Development: Past, Present and Future, edited by D. A. Randall, pp. 285325, Elsevier, New York.
  • Ghil, M., and A. W. Robertson (2002), “Waves” vs. “particles” in the atmosphere's phase space: A pathway to long-range forecasting? Proc. Natl. Acad. Sci. U. S. A., 99, suppl. 1, 24932500.
  • Ghil, M., and R. Vautard (1991), Interdecadal oscillations and the warming trend in global temperature time series, Nature, 350, 324327.
  • Ghil, M., M. Kimoto, and J. D. Neelin (1991), Nonlinear dynamics and predictability in the atmospheric sciences, U.S. Natl. Rep. Int. Union Geod. Geophys. 1987–1990, Rev. Geophys., 29, 4655.
  • Ghil, M., K. Ide, A. F. Bennett, P. Courtier, M. Kimoto, and N. E. Sato (1997), Data Assimilation in Meteorology and Oceanography: Theory and Practice, Universal Acad., Tokyo, Japan.
  • Ghil, M., Y. Feliks, and L. Sushama (2002a), Baroclinic and barotropic aspects of the wind-driven ocean circulation, Physica D, 167, 135.
  • Ghil, M., et al. (2002b), Advanced spectral methods for climatic time series, Rev. Geophys., 40(1), 1003, doi:10.1029/2000RG000092.
  • Ghil, M., J.-G. Liu, C. Wang, and S. Wang (2004), Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow, Physica D, 197, 149173.
  • Gildor, H., and E. Tziperman (2001), A sea ice climate switch mechanism for the 100-kyr glacial cycles, J. Geophys. Res., 106, 91179133.
  • Gill, A. E. (1982), Atmosphere-Ocean Dynamics, Elsevier, New York.
  • Gordon, A. L. (1986), Interocean exchange of thermocline water, J. Geophys. Res., 91, 50375046.
  • Greatbatch, R. J., and S. Zhang (1995), An interdecadal oscillation in an idealized ocean basin forced by constant heat flux, J. Clim., 8, 8291.
  • Griffies, S. M., and E. Tziperman (1995), A linear thermohaline oscillator driven by stochastic atmospheric forcing, J. Clim., 8, 24402453.
  • Guckenheimer, J., and P. Holmes (1990), Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 2nd ed., Springer, New York.
  • Haidvogel, D. B., J. C. McWilliams, and P. R. Gent (1992), Boundary current separation in a quasi-geostrophic eddy-resolving ocean circulation model, J. Phys. Oceanogr., 22, 882902.
  • Haines, K. (1994), Low-frequency variability in atmospheric middle latitudes, Surv. Geophys., 15, 161.
  • Hall, M., and H. Bryden (1982), Direct estimates of ocean heat transport, Deep Sea Res., Part A, 29, 339359.
  • Haney, R. L. (1971), Surface thermal boundary conditions for ocean circulation models, J. Phys. Oceanogr., 4, 241248.
  • Hasselmann, K. (1976), Stochastic climate models: I: Theory, Tellus, 28, 473485.
  • Hasselmann, K. (1982), An ocean model for climate variability studies, Prog. Oceanogr., 11, 6992.
  • Hays, J. D., J. Imbrie, and N. J. Shackleton (1976), Variations in the Earth's orbit: Pacemaker of the ice ages, Science, 194, 1121.
  • Heinrich, H. (1988), Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years, Quat. Res., 29, 142152.
  • Held, I. M. (2001), The partitioning of the poleward energy transport between the tropical ocean and atmosphere, J. Atmos. Sci., 58, 943948.
  • Held, I. M., and M. J. Suarez (1974), Simple albedo feedback models of the ice caps, Tellus, 26, 613629.
  • Hogg, N. G., R. S. Pickart, R. M. Hendry, and W. J. Smethie (1986), The northern recirculation gyre of the Gulf Stream, Deep Sea Res., Part A, 33, 11391165.
  • Holland, W. R., and F. O. Bryan (1994), Modelling the wind and thermohaline circulation in the North-Atlantic Ocean, in Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, edited by P. Malanotte-Rizzoli, and A. Robinson, pp. 35156, Springer, New York.
  • Holzer, M., and T. M. Hall (2000), Transit-time and tracer-age distributions in geophysical flows, J. Atmos. Sci., 57, 35393558.
  • Huang, R. (1993), Real freshwater fluxes as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation, J. Phys. Oceanogr., 23, 24282446.
  • Huang, R. X., J. R. Luyten, and H. M. Stommel (1992), Multiple equilibrium states in combined thermal and saline circulation, J. Phys. Oceanogr., 22, 231246.
  • Huck, T., A. Colin de Verdire, and A. J. Weaver (1999), Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes, J. Phys. Oceanogr., 29, 865892.
  • Ichikawa, H., and R. C. Beardsley (1993), Temporal and spatial variability of volume transport of the Kuroshio in the East China Sea, Deep Sea Res., Part I, 40, 583605.
  • Ierley, G. R., and V. A. Sheremet (1995), Multiple solutions and advection-dominated flows in the wind-driven circulation. I: Slip, J. Mar. Res., 53, 703737.
  • Imbrie, J., and K. P. Imbrie (1986), Ice Ages: Solving the Mystery, 2nd ed., Harvard Univ. Press, Cambridge, Mass.
  • Jiang, S., F.-F. Jin, and M. Ghil (1993), The nonlinear behavior of western boundary currents in a wind-driven, double-gyre, shallow-water model, paper presented at Ninth Conference on Atmospheric and Oceanic Waves and Stability, Am. Meterorol. Soc., San Antonio, Tex.
  • Jiang, S., F.-F. Jin, and M. Ghil (1995), Multiple equilibria and aperiodic solutions in a wind-driven double-gyre, shallow-water model, J. Phys. Oceanogr., 25, 764786.
  • Johns, W. E., T. J. Shay, J. M. Bane, and D. R. Watts (1995), Gulf Stream structure, transport and recirculation near 68°W, J. Geophys. Res., 100, 817838.
  • Jouzel, J., et al. (1991), Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period, Nature, 364, 407412.
  • Joyce, T. M., and P. Robbins (1995), The long-term hydrographic record at Bermuda, J. Clim., 9, 31223131.
  • Kamenkovich, V. M., V. A. Sheremet, A. R. Pastushkov, and S. O. Belotserkovsky (1995), Analysis of barotropic model of the subtropical gyre in the ocean for finite Reynolds number, J. Mar. Res., 53, 959994.
  • Karaca, M., and D. Müller (1989), Simulation of sea surface temperatures with surface heat fluxes from an atmospheric circulation model, Tellus, Ser. A, 41, 3247.
  • Karaca, M., A. Wirth, and M. Ghil (1999), A box model for the paleoceanography of the Black Sea, Geophys. Res. Lett., 26, 497500.
  • Keir, R. S. (1988), On the late Pleistocene ocean geochemistry and circulation, Paleoceanography, 3, 413446.
  • Keller, H. B. (1977), Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of Bifurcation Theory, edited by P. H. Rabinowitz, pp. 359384, Elsevier, New York.
  • Keppene, C., S. Markus, M. Kimoto, and M. Ghil (2000), Intraseasonal variability in a two-layer model and observations, J. Atmos. Sci., 57, 10101028.
  • Klinger, B. A., and J. Marotzke (1999), Behavior of double-hemispheric thermohaline flows in a single basin, J. Phys. Oceanogr., 29, 382399.
  • Kraus, E., and J. S. Turner (1967), A one-dimensional model of the seasonal thermocline, Tellus, 19, 98105.
  • Kravtsov, S., and M. Ghil (2004), Interdecadal variability in a hybrid coupled ocean-atmosphere-sea-ice model, J. Phys. Oceanogr., 34, 17561775.
  • Kushnir, Y. (1994), Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions, J. Phys. Oceanogr., 7, 141157.
  • Latif, M., and T. P. Barnett (1994), Causes of decadal climate variability over the North Pacific and North America, Science, 266, 634637.
  • Latif, M., and T. P. Barnett (1996), Decadal climate variability over the North Pacific and North America: Dynamics and predictability, J. Clim., 9, 24072423.
  • LeBlond, P. H., and L. A. Mysak (1978), Waves in the Ocean, Elsevier, New York.
  • Le Traon, P. Y., F. Nadal, and N. Ducet (1998), An improved mapping method of multi-satellite altimeter data, J. Atmos. Oceanic Technol., 15, 522534.
  • Lee, D., and P. Cornillon (1995), Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream, J. Geophys. Res., 100, 13,60313,613.
  • Legras, B., and M. Ghil (1985), Persistent anomalies, blocking, and variations in atmospheric predictability, J. Atmos. Sci., 42, 433471.
  • Lenderink, G., and H. Haarsma (1994), Variability and multiple equilibria of the thermohaline circulation associated with deep-water formation, J. Phys. Oceanogr., 24, 14801493.
  • Levitus, S., J. Antonov, T. Boyer, and C. Stephens (2000), Warming of the world ocean, Science, 287, 22252229.
  • Lorenz, E. N. (1963a), Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130141.
  • Lorenz, E. N. (1963b), The mechanics of vacillation, J. Atmos. Sci., 20, 448464.
  • MacDonald, A. M., and C. Wunsch (1996), An estimate of global ocean circulation and heat fluxes, Nature, 382, 436439.
  • Maier-Reimer, E., U. Mikolajewicz, and K. Hasselman (1993), Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing, J. Phys. Oceanogr., 23, 731757.
  • Manabe, S., and R. J. Stouffer (1988), Two stable equilibria of a coupled ocean-atmosphere model, J. Clim., 1, 841866.
  • Manabe, S., and R. J. Stouffer (1993), Century-scale effects of increased CO2 on the ocean-atmosphere system, Nature, 364, 215220.
  • Manabe, S., and R. J. Stouffer (1995), Simulation of abrupt climate change induced by freshwater input into the North Atlantic Ocean, Nature, 378, 165167.
  • Mann, M. E., R. S. Bradley, and M. K. Hughes (1998), Global-scale temperature patterns and climate forcing over the past six centuries, Nature, 392, 779787.
  • Marotzke, J. (1991), Influence of convective adjustment on the stability of the thermohaline circulation, J. Phys. Oceanogr., 21, 903907.
  • Marotzke, J., and P. Willebrand (1991), Multiple equilibria of the global thermohaline circulation, J. Phys. Oceanogr., 21, 13721385.
  • Marotzke, J., P. Welander, and J. Willebrand (1988), Instability and multiple steady states in a meridional-plane model of thermohaline circulation, Tellus, Ser. A, 40, 162172.
  • Martinson, D. G., K. Bryan, M. Ghil, M. M. Hall, T. R. Karl, E. S. Sarachik, S. Sorooshian, and L. D. Talley (1995), Natural Climate Variability on Decade-to-Century Time Scales, Natl. Acad. Press, Washington, D. C.
  • McCalpin, J. D., and D. B. Haidvogel (1996), Phenomenology of the low-frequency variabiliity in a reduced gravity quasi-geostrophic double-gyre model, J. Phys. Oceanogr., 26, 739752.
  • McWilliams, J. C. (1996), Modeling the ocean general circulation, Annu. Rev. Fluid Mech., 28, 215248.
  • Meacham, S. P. (2000), Low-frequency variability of the wind-driven circulation, J. Phys. Oceanogr., 30, 269293.
  • Mikolajewicz, U., and E. Maier-Reimer (1990), Internal secular variability in an ocean general circulation model, Clim. Dyn., 4, 145156.
  • Mitchell, J. M. (1976), An overview of climate variability and its causal mechanisms, Quat. Res., 6, 481493.
  • Mizuno, S., and W. B. White (1993), Annual and interannual variability in the Kuroshio Current System, J. Phys. Oceanogr., 13, 18471867.
  • Molteni, F. M. (2002), Weather regimes and multiple equilibria, in Encyclopedia of Atmospheric Sciences, edited by J. R. Holton, pp. 25772586, Elsevier, New York.
  • Moron, V., R. Vautard, and M. Ghil (1998), Trends, interdecadal and interannual oscillations in global sea-surace temperature, Clim. Dyn., 14, 545569.
  • Munk, W. (1950), On the wind-driven ocean circulation, J. Meteorol., 7, 7993.
  • Nadiga, B. T., and B. Luce (2001), Global bifurcation of Shilñikov type in a double-gyre model, J. Phys. Oceanogr., 31, 26692690.
  • Nauw, J., and H. A. Dijkstra (2001), The origin of low-frequency variability of double-gyre wind-driven flows, J. Mar. Res., 59, 567597.
  • Neelin, J. D., M. Latif, and F.-F. Jin (1994), Dynamics of coupled ocean-atmosphere models: The tropical problem, Annu. Rev. Fluid Mech., 26, 617659.
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak (1998), ENSO theory, J. Geophys. Res., 103, 14,26114,290.
  • New, A. L., R. Bleck, Y. Jia, M. Marsh, M. Huddleston, and S. Barnard (1995), An isopycnic model study of the North Atlantic. I: Model experiment and water mass formation, J. Phys. Oceanogr., 25, 26672699.
  • Niiler, P. P., and W. S. Richardson (1973), Seasonal variability of the Florida Current, J. Mar. Res., 31, 144167.
  • North, G. (1975), Analytical solution to a simple climate model with diffusive heat transport, J. Atmos. Sci., 32, 13011307.
  • North, G. R., R. F. Cahalan, and J. A. Coakley (1981), Energy balance climate models, Rev. Geophys., 19, 19121.
  • North, G. R., J. G. Mengel, and D. A. Short (1983), Simple energy-balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages, J. Geophys. Res., 88, 65766586.
  • Oberhuber, J. M. (1988), The budget of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean, Rep. 15, Max Planck Inst. für Meteorol. Hamburg, Hamburg, Germany.
  • Pacanowski, R. C. (1996), MOM 2 documentation, user's guide and reference manual, GFDL Tech. Rep. 3.1, Geophys. Fluids Dyn. Lab., Princeton, N. J.
  • Paillard, D., M. Ghil, and H. Le Treut (1993), Dissolved organic matter and the glacial-interglacial pCO2 problem, Global Biogeochem. Cycles, 7, 901914.
  • Pedlosky, J. (1987), Geophysical Fluid Dynamics, 2nd ed., Springer, New York.
  • Pedlosky, J. (1996), Ocean Circulation Theory, Springer, New York.
  • Philander, S. G. H. (1990), El Niño and the Southern Oscillation, Elsevier, New York.
  • Plaut, G., and R. Vautard (1994), Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere, J. Atmos. Sci., 51, 210236.
  • Plaut, G., M. Ghil, and R. Vautard (1995), Interannual and interdecadal variability in 335 years of Central England Temperature, Science, 268, 710713.
  • Preisendorfer, R. W. (1988), Principal Component Analysis in Meteorology and Oceanography, Elsevier, New York.
  • Primeau, F. W. (1998), Multiple equilibria and low-frequency variability of wind-driven ocean models, Ph.D. thesis, Mass. Inst. of Technol. and Woods Hole Oceanogr. Inst., Cambridge, Mass.
  • Primeau, F. W. (2002), Multiple equilibria and low-frequency variability of the wind-driven ocean circulation, J. Phys. Oceanogr., 32, 22362256.
  • Quon, C., and M. Ghil (1992), Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions, J. Fluid Mech., 245, 449484.
  • Quon, C., and M. Ghil (1995), Multiple equilibria and stable oscillations in thermosolutal convection at small aspect ratio, J. Fluid Mech., 291, 3356.
  • Rahmstorf, S. (1995a), Multiple convection patterns and thermohaline flow in an idealized OGCM, J. Clim., 8, 30283039.
  • Rahmstorf, S. (1995b), Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle, Nature, 378, 145149.
  • Rahmstorf, S. (2000), The thermohaline circulation: A system with dangerous thresholds? Clim. Change, 46, 247256.
  • Richardson, P. (1980), Benjamin Franklin and Timothy Folger's first printed chart of the Gulf Stream, Science, 207, 643645.
  • Rivin, I., and E. Tziperman (1997), Linear versus self-sustained interdecadal thermohaline variability in a coupled box model, J. Phys. Oceanogr., 27, 12161232.
  • Robbins, P. E., and J. M. Toole (1997), The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean, Deep Sea Res., Part II, 44, 879906.
  • Robinson, A. R. E. (1983), Eddies in Marine Science, Springer, New York.
  • Rooth, C. (1982), Hydrology and ocean circulation, Prog. Oceanogr., 11, 131149.
  • Sakai, K., and W. R. Peltier (1995), A simple model of the Atlantic thermohaline circulation: Internal and forced variability with paleoclimatological implications, J. Geophys. Res., 100, 13,45513,479.
  • Salmon, R. (1986), A simplified linear ocean circulation theory, J. Mar. Res., 44, 695711.
  • Sarmiento, J. L., and J. R. Toggweiler (1984), A new model for the role of the oceans in determining atmospheric CO2, Nature, 308, 621624.
  • Schlichting, H. (1968), Boundary Layer Theory, 5th ed., Mc Graw-Hill, New York.
  • Schlösser, P., G. Bonisch, M. Rhein, and R. Bayer (1991), Reduction of deep water formation in the Greenland Sea during the 1980s: Evidence from tracer data, Science, 251, 10541056.
  • Schmeits, M. J., and H. A. Dijkstra (2000), On the physics of the 9 months variability in the Gulf Stream region: Combining data and dynamical systems analysis, J. Phys. Oceanogr., 30, 19671987.
  • Schmeits, M. J., and H. A. Dijkstra (2001), Bimodality of the Kuroshio and the Gulf Stream, J. Phys. Oceanogr., 31, 29712985.
  • Schmitt, R. W., P. Bogden, and C. Dorman (1989), Evaporation minus precipitation and density fluxes for the North Atlantic, J. Phys. Oceanogr., 19, 12081221.
  • Schmitz, W. J. (1995), On the interbasin-scale thermohaline circulation, Rev. Geophys., 33, 151173.
  • Schneider, S. H., and R. E. Dickinson (1974), Climate modeling, Rev. Geophys., 12, 447493.
  • Schott, F., and R. L. Molinari (1996), The western boundary circulation of the subtropical warm watersphere, in The Warm Water Sphere of the North Atlantic Ocean, edited by W. Krauss, pp. 229252, Gebrüder Borntraeger, Stuttgart, Germany.
  • Seager, R., D. S. Battisti, J. Yin, N. Gordon, N. Naik, A. C. Clement, and M. A. Cane (2001), Is the Gulf Stream responsible for Europe's mild winters? Q. J. R. Meteorol. Soc., 128, 25632586.
  • Semtner, A. J., and R. M. Chervin (1992), Ocean general circulation from a global eddy-resolving model, J. Geophys. Res., 97, 54935550.
  • Seydel, R. (1994), Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos, Springer, New York.
  • Sheremet, V. A., G. R. Ierley, and V. M. Kamenkovich (1997), Eigenanalysis of the two-dimensional wind-driven ocean circulation problem, J. Mar. Res., 55, 5792.
  • Shilnikov, L. P. (1965), A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl., 6, 163166.
  • Simonnet, E., and H. A. Dijkstra (2002), Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation, J. Phys. Oceanogr., 32, 17471762.
  • Simonnet, E., M. Ghil, K. Ide, R. Temam, and S. Wang (2003a), Low-frequency variability in shallow-water models of the wind-driven ocean circulation. part I: Steady-state solutions, J. Phys. Oceanogr., 33, 712728.
  • Simonnet, E., M. Ghil, K. Ide, R. Temam, and S. Wang (2003b), Low-frequency variability in shallow-water models of the wind-driven ocean circulation. part II: Time dependent solutions, J. Phys. Oceanogr., 33, 729752.
  • Simonnet, E., M. Ghil, and H. A. Dijkstra (2005), Homoclinic bifurcations of barotropic quasi-geostrophic double-gyre flows, J. Mar. Res., in press.
  • Smale, S. (1995), Differentiable dynamical systems, Bull. Am. Math. Soc., 73, 747817.
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht (2000), Numerical simulation of the North Atlantic Ocean at equation image°, J. Phys. Oceanogr., 30, 15321561.
  • Speich, S., H. A. Dijkstra, and M. Ghil (1995), Successive bifurcations of a shallow-water model with applications to the wind driven circulation, Nonlinear Proc. Geophys., 2, 241268.
  • Stammer, D. R., R. Tokmakian, A. Semtner, and C. Wunsch (1996), How well does a equation image° global circulation model simulate large-scale oceanic observations? J. Geophys. Res., 101, 25,77925,811.
  • Stommel, H. (1948), The westward intensification of wind-driven ocean currents, Eos Trans. AGU, 29, 202206.
  • Stommel, H. (1951), An elementary explanation of why ocean currents are strongest in the west, Bull. Am. Meteorol. Soc., 32, 2123.
  • Stommel, H. (1961), Thermohaline convection with two stable regimes of flow, Tellus, 2, 224230.
  • Strong, C., F.-F. Jin, and M. Ghil (1995), Intraseasonal oscillations in a barotropic model with annual cycle, and their predictability, J. Atmos. Sci., 52, 26272642.
  • Sverdrup, H. U. (1947), Wind-driven currents in a baroclinic ocean with application to the equatorial current in the eastern Pacific, Proc. Natl. Acad. Sci. U. S. A., 33, 318326.
  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming (1946), The Oceans: Their Physics, Chemistry and General Biology, Prentice-Hall, Upper Saddle River, N. J.
  • Sy, A., M. Rhein, J. N. R. Lazier, K. P. Koltermann, J. Meincke, A. Putzka, and M. Bersch (1997), Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean, Nature, 388, 563567.
  • Talley, L. D. (1999), Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations, in Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr. Ser., vol. 112, edited by P. Clark, R. S. Webb, and L. D. Keigwin, pp. 122, AGU, Washington, D. C.
  • Tansley, C. E., and D. P. Marshall (2001), An implicit formula for boundary current separation, J. Phys. Oceanogr., 31, 16331638.
  • Te Raa, L. A., and H. A. Dijkstra (2002), Instability of the thermohaline ocean circulation on interdecadal time scales, J. Phys. Oceanogr., 32, 138160.
  • Te Raa, L. A., and H. A. Dijkstra (2003), Sensitivity of North Atlantic multidecadal variability to freshwater flux forcing, J. Clim., 32, 138160.
  • Thual, O., and J. C. McWilliams (1992), The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models, Geophys. Astrophys. Fluid Dyn., 64, 6795.
  • Tziperman, E. (1997), Inherently unstable climate behavior due to weak thermohaline ocean circulation, Nature, 386, 592595.
  • Tziperman, E., J. R. Toggweiler, Y. Feliks, and K. Bryan (1994), Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr., 24, 217232.
  • Vazquez, J., V. Zlotnicki, and L.-L. Fu (1990), Sea level variabilities in the Gulf Stream between Cape Hatteras and 50°W: A Geosat study, J. Geophys. Res., 95, 17,95717,964.
  • Vellinga, M. (1996), Instability of two-dimensional thermohaline circulation, J. Phys. Oceanogr., 26, 305319.
  • Vellinga, M. (1998), Multiple equilibria of the thermohaline circulation as a side effect of convective adjustment, J. Phys. Oceanogr., 28, 305319.
  • Veronis, G. (1963), An analysis of the wind-driven ocean circulation with a limited number of Fourier components, J. Atmos. Sci., 20, 577593.
  • Veronis, G. (1966), Wind-driven ocean circulation. II: Numerical solution of the nonlinear problem, Deep Sea Res. Oceanogr. Abstr., 13, 3155.
  • Walin, G. (1985), The thermohaline circulation and the control of ice ages, Palaeogeogr. Palaeoclimatol. Palaeoecol., 50, 323332.
  • Wang, L., and C. Koblinsky (1995), Low-frequency variability in regions of the Kuroshio Extension and the Gulf Stream, J. Geophys. Res., 100, 18,31318,331.
  • Weaver, A. J., and T. M. Hughes (1994), Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation, Nature, 367, 447450.
  • Weaver, A. J., and E. S. Sarachik (1991), The role of mixed boundary conditions in numerical models of the ocean's climate, J. Phys. Oceanogr., 21, 14701493.
  • Weaver, A. J., E. S. Sarachik, and J. Marotzke (1991), Freshwater flux forcing of decadal and interdecadal oceanic variability, Nature, 353, 836838.
  • Weaver, A. J., J. Marotzke, P. F. Cummings, and E. S. Sarachik (1993), Stability and variability of the thermohaline circulation, J. Phys. Oceanogr., 23, 3960.
  • Weaver, A. J., S. Aura, and P. G. Myers (1994), Interdecadal variability in an idealized model of the North Atlantic, J. Geophys. Res., 99, 12,42312,441.
  • Weijer, W., and H. A. Dijkstra (2001), Bifurcations of the three-dimensional thermohaline circulation: The double hemispheric case, J. Mar. Res., 59, 599631.
  • Weijer, W., W. P. M. De Ruijter, H. A. Dijkstra, and P. J. Van Leeuwen (1999), Impact of interbasin exchange on the Atlantic overturning circulation, J. Phys. Oceanogr., 29, 22662284.
  • Welander, P. (1982), A simple heat-salt oscillator, Dyn. Atmos. Oceans, 6, 233242.
  • Welander, P. (1986), Thermohaline effects in the ocean circulation and related simple models, in Large-Scale Transport Processes in Oceans and Atmosphere, edited by J. Willebrand, and D. L. T. Anderson, pp. 163200, Springer, New York.
  • Wijffels, S. E., R. W. Schmitt, H. L. Bryden, and A. Stigebrandt (1992), Transport of fresh water by the ocean, J. Phys. Oceanogr., 22, 155163.
  • Winton, M., and E. S. Sarachik (1993), Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models, J. Phys. Oceanogr., 23, 13891410.
  • World Ocean Circulation Experiment (WOCE) (2001), Ocean Circulation and Climate: Observing and Modeling the Global Ocean Ocean, edited by G. Siedler, J. Church, and J. Gould, Elsevier, New York.
  • Wright, D. G., and T. F. Stocker (1992), Sensitivities of a a zonally averaged global ocean circulation model, J. Geophys. Res., 97, 12,70712,730.
  • Wright, D. G., C. B. Vreugdenhil, and T. M. Hughes (1995), Vorticity dynamics and zonally averaged ocean models, J. Phys. Oceanogr., 25, 21412154.
  • Wright, D. G., T. Stocker, and D. Mercer (1998), Closures used in zonally averaged ocean models, J. Phys. Oceanogr., 28, 791804.
  • Wunsch, C. (1996), The Ocean Circulation Inverse Problem, Cambridge Univ. Press, New York.
  • Wyrtki, K., L. Magaard, and J. Hagger (1976), Eddy energy in the oceans, J. Geophys. Res., 81, 26412646.
  • Yang, J., and J. D. Neelin (1993), Sea-ice interaction with the thermohaline circulation, Geophys. Res. Lett., 20, 217220.
  • Zaucker, F., T. F. Stocker, and W. S. Broecker (1994), Atmospheric freshwater fluxes and their effect on the global thermohaline circulation, J. Geophys. Res., 99, 12,44312,457.