SEARCH

SEARCH BY CITATION

References

  • Ababou, R., and E. F. Wood, Comment on “Effective groundwater model parameter values: Influence of spatial variability of hydraulic conductivity, leakance and recharge” by J. J. Gomez-Hernandez and S. M. Gorelick, Water Resour. Res., 26(8), 18431846, 1990.
  • Butler, J. J., A stochastic analysis of pumping tests in laterally nonuniform media, Water Resour. Res., 27(9), 24012414, 1991.
  • Carslaw, H. S., and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., pp. 361380, Clarendon, Oxford, UK, 1959.
  • Chin, D. A., and T. Wang, An investigation of the validity of first-order stochastic dispersion theories in isotropic porous media, Water Resour. Res., 28(6), 15311542, 1992.
  • Dagan, G., Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 1, Conditional simulation and the direct problem, Water Resour. Res., 18(4), 813833, 1982.
  • Dagan, G., Flow and Transport in Porous Formations, Springer-Verlag, 1989.
  • Desbarats, A. J., Spatial averaging of transmissivity in heterogeneous fields with flow toward a well, Water Resour. Res., 28(3), 757767, 1992.
  • Desbarats, A. J., Spatial averaging of hydraulic conductivities under radial flow conditions, Math. Geol., 26, 121, 1994.
  • Deutsch, C. V., and A. G. Journel, GSLIB Geostatistical Software Library and User'sGuide, Oxford Univ. Press, 1998.
  • Fiori, A., P. Indelman, and G. Dagan, Correlation structure of flow variables for steady flow toward a well with application to highly anisotropic heterogeneous formations, Water Resour. Res., 34(4), 699708, 1998.
  • Franzetti, S., A. Guadagnini, and E. Orsi, Monte Carlo simulation and effective conductivity in confined radial flow fields, in Calibration and Reliability in Groundwater Modelling-ModelCARE 96, edited by K. Kovar, and P. Van der Heijde, IAHS Publ., 237, pp. 463471, 1996.
  • Gomez-Hernandez, J. J., and S. M. Gorelick, Effective groundwater model parameter values: Influence of spatial variability of hydraulic conductivity, leakance and recharge, Water Resour. Res., 25(3), 405419, 1989.
  • Guadagnini, A., and S. P. Neuman, Nonlocal and localized finite element solution of conditional mean flow in randomly heterogeneous media, Tech. Rep. HWR-97-100, Dep. of Hydrol. and Water Resour., Univ. of Ariz., Tucson, 1997.
  • Guadagnini, A., and S. P. Neuman, Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains, 1, Theory and computational approach, Water Resour. Res., 35(10), 29993018, 1999a.
  • Guadagnini, A., and S. P. Neuman, Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains, 2, Computational examples, Water Resour. Res., 35(10), 30193039, 1999bc.
  • Indelman, P., Steady-state source flow in heterogeneous porous media, Transp. Porous Media, 45, 105127, 2001.
  • Indelman, P., A. Fiori, and G. Dagan, Steady flow toward wells in heterogeneous formations: Mean head and equivalent conductivity, Water Resour. Res., 32(7), 19751983, 1996.
  • Matheron, G., Elements Pour Une Theorie des Milieux Poreux, Masson et Cie, Paris, 1967.
  • McDonald, M. G., and A. W. Harbaugh, A modular three-dimensional finite-difference groundwater flow model, Man. 83-875,U. S. Geol. Surv., Reston, Va., 1988.
  • Naff, R. L., Radial flow in heterogeneous porous media: An analysis of specific discharge, Water Resour. Res., 27(3), 307316, 1991.
  • Neuman, S. P., and S. Orr, Prediction of steady state flow in nonuniform geologic media by conditional moments: Exact nonlocal formalism, effective conductivities, and weak approximation, Water Resour. Res., 29(2), 341364, 1993.[Correction, Water Resour. Res., 32(5),1479–1480, 1996.]
  • Oliver, D. S., The influence of nonuniform transmissivity and storativity on drawdown, Water Resour. Res., 29(1), 169178, 1993.
  • Ptak, T., Evaluation of dual tracer forced gradient transport experiments in a heterogeneous porous aquifer within a non-parametric numerical stochastic transport modelling framework, IAHS Publ., 237, 241252, 1996.
  • Riva, M., A. Guadagnini, S. P. Neumann, and S. Franzetti, Radial flow in a bounded randomly heterogeneous aquifer, Transp. Porous Media, 45(1), 139193, 2001.
  • Sánchez-Vila, X., Radially convergent flow in heterogeneous porous media, Water Resour. Res., 33(7), 16331641, 1997.
  • Shvidler, M. I., Filtration Flows in Heterogeneous Media (A Statistical Approach), Consultants Bur., New York, 1964.
  • Staff of Bateman Manuscript Project, Higher Transcendental Function, vol. II, p. 104, McGraw-Hill, New York, 1953.
  • Theis, C. V., The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Eos Trans. AGU, 16, 519, 1935.