SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, 1046 pp., 9th print., Dover, Mineola, N. Y., 1972.
  • Baker, V. R., Paleoflood hydrology and extraordinary flood events, J. Hydrol., 96, 7999, 1987.
  • Baker, V. R., Paleoflood hydrology and the estimation of extreme floods, in Inland Flood Hazards—Human, Riparian and Aquatic Communities, edited by E. E. Wohl, pp. 359377, Cambridge Univ. Press, New York, 2000.
  • Baker, V. R., R. C. Kochel, and P. C. Patton (Eds.), Flood Geomorphology, 503 pp., John Wiley, Hoboken, N. J., 1988.
  • Benson, M. A., Use of historical data in flood frequency analysis, Eos Trans. AGU, 31(3), 419424, 1950.
  • Blainey, J. B., R. H. Webb, M. E. Moss, and V. R. Baker, Bias and information content of paleoflood data in flood-frequency analysis, in Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology, Water Sci. Appl. Ser., vol. 5, edited by P. K. House et al., pp. 161174, AGU, Washington, D. C., 2002.
  • Bobée, B. B., and F. Ashkar, The Gamma Family and Derived Distributions Applied in Hydrology, 203 pp., Water Resour. Publ., Highlands Ranch, Colo., 1991.
  • Bobée, B. B., and R. Robitaille, The use of the Pearson type III and log Pearson type III distributions revisited, Water Resour. Res., 13(2), 427443, 1977.
  • Cohn, T. A., The incorporation of historical information in flood frequency analysis, 79 pp., M.S. thesis, Cornell Univ., Ithaca, N. Y., 1984.
  • Cohn, T. A., Flood frequency analysis with historical flood information, 144 pp., Ph.D. thesis, Cornell Univ., Ithaca, N. Y., 1986.
  • Cohn, T. A., W. L. Lane, and W. G. Baier, An algorithm for computing moments-based flood quantile estimates when historical information is available, Water Resour. Res., 33(9), 20892096, 1997.
  • Cohn, T. A., W. L. Lane, and J. R. Stedinger, Confidence intervals for expected moments algorithm flood quantile estimates, Water Resour. Res., 37(6), 16951706, 2001.
  • Condie, R., and K. A. Lee, Flood frequency analysis with historic information, J. Hydrol., 58, 4761, 1982.
  • Costa, J. E., Holocene stratigraphy in flood frequency analysis, Water Resour. Res., 14(4), 626632, 1978.
  • Dalrymple, T., Flood-frequency analyses, in Manual of Hydrology, part 3, Flood Flow Techniques, U. S. Geol. Surv. Water Supply Pap., 1543-A, 80 pp., 1960.
  • Dupuis, D. J., Estimating the probability of obtaining nonfeasible parameter estimates of the generalized extreme-value distribution, J. Stat. Comput. Simul., 56, 2338, 1996.
  • Dupuis, D. J., and M. Tsao, A hybrid estimator for generalized Pareto and extreme-value distributions, Commun. Stat. Theory Methods, 27(4), 925941, 1998.
  • England, J. F.Jr, Assessment of historical and paleohydrologic information in flood frequency analysis, 292 pp., M.S. thesis, Colorado State Univ., Fort Collins, 1998.
  • Fanok, S. F., and E. E. Wohl, Assessing the accuracy of paleohydrologic indicators, Harpers Ferry, West Virginia, J. Am. Water Resour. Assoc., 33(5), 10911102, 1997.
  • Federal Emergency Management Agency (FEMA), Flood Insurance study guidelines and specifications for study contractors, Washington, D. C., 1995.
  • Francés, F., J. D. Salas, and D. C. Boes, Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models, Water Resour. Res., 30(6), 16531664, 1994.
  • Gilroy, E. J., The upper bound of a log Pearson type 3 variable with negatively skewed logarithms, U.S. Geol. Surv. Prof. Pap., 800-B, 273275, 1972.
  • Guo, S. L., and C. Cunnane, Evaluation of the usefulness of historical and palaeological floods in quantile estimation, J. Hydrol., 129, 245262, 1991.
  • Hosking, J. R. M., and J. R. Wallis, Paleoflood hydrology and flood frequency analysis, Water Resour. Res., 22(4), 543550, 1986a.
  • Hosking, J. R. M., and J. R. Wallis, The value of historical data in flood frequency analysis, Water Resour. Res., 22(11), 16061612, 1986b.
  • Hosking, J. R. M., and J. R. Wallis, Regional Frequency Analysis—An Approach Based on L-Moments, 224 pp., Cambridge Univ. Press, New York, 1997.
  • House, P. K., R. H. Webb, V. R. Baker, and D. R. Levish (Eds.), Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology, Water Sci. Appl. Ser., vol. 5, 386 pp., AGU, Washington, D. C., 2002.
  • Hupp, C. R., Botanical evidence of floods and paleoflood history, in Regional Flood Frequency Analysis, edited by V. P. Singh, pp. 355369, D. Reidel, Norwell, Mass., 1987.
  • Hupp, C. R., Plant ecological aspects of flood geomorphology and paleoflood history, in Flood Geomorphology, edited by V. R. Baker, R. C. Kochel, and P. C. Patton, pp. 335356, John Wiley, Hoboken, N. J., 1988.
  • Institution of Engineers, Australia, Australian Rainfall and Runoff: A Guide to Flood Estimation, book IV, Estimation of Design Peak Discharges, chap. 2, Barton, ACT, Australia, 1987.
  • Interagency Committee on Water Data (IACWD), Guidelines for determining flood flow frequency: Bulletin 17-B (revised and corrected), 28 pp., Hydrol. Subcomm., Washington, D. C., March 1982.
  • Jarrett, R. D., Paleohydrology and its value in analyzing floods and droughts, U.S. Geol. Surv. Water Supply Pap., 2375, 105116, 1991.
  • Jarrett, R. D., and J. E. Costa, Evaluation of the flood hydrology in the Colorado Front Range using precipitation, streamflow, and paleoflood data for the Big Thompson River Basin, U.S. Geol. Surv. Water Resour. Invest. Rep., 87-4117, 37 pp., 1988.
  • Jarrett, R. D., and J. F. England Jr., Reliability of paleostage indicators for paleoflood studies, in Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology, Water Sci. Appl. Ser., vol. 5, edited by P. K. House et al., pp. 91109, AGU, Washington, D. C., 2002.
  • Jarrett, R. D., and E. M. Tomlinson, Regional interdisciplinary paleoflood approach to assess extreme flood potential, Water Resour. Res., 36(10), 29572984, 2000.
  • Kirby, W. H., Annual flood frequency analysis using U. S. Water Resources Council Guidelines (program J407), in WATSTORE User's Guide, vol. 4, sect. C, U.S. Geol. Surv. Open File Rep., 79-1336-I, C-1-C-56, 1981.
  • Kochel, R. C., and D. F. Ritter, Implications of flume experiments for the interpretation of slackwater paleoflood deposits, in Regional Flood Frequency Analysis, edited by V. P. Singh, pp. 371390, D. Reidel, Norwell, Mass., 1987.
  • Kuczera, G., Robust flood frequency models, Water Resour. Res., 18(2), 315324, 1982.
  • Kuczera, G., Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference, Water Resour. Res., 35(5), 15511558, 1999.
  • Lane, W. L., Paleohydrologic data and flood frequency estimation, in Regional Flood Frequency Analysis, edited by V. P. Singh, pp. 287298, D. Reidel, Norwell, Mass., 1987.
  • Lane, W. L., Method of moments approach to historical data, informal handout, 2 pp., Bulletin 17B Working Group, Hydrol. Subcomm., Interagency Adv. Comm. on Water Data, Washington, D. C., 1995.
  • Lane, W. L., and T. A. Cohn, Expected moments algorithm for flood frequency analysis, in North American Water and Environment Congress 1996 [CD-ROM], edited by C. T. Bathala, Am. Soc. of Civ. Eng., Reston, Va., 1996.
  • Leese, M. N., Use of censored data in the estimation of gumbel distribution parameters for annual maximum flood series, Water Resour. Res., 9(6), 15341542, 1973.
  • Levish, D. R., Paleohydrologic bounds—Non-exceedance information for flood hazard assessment, in Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology, Water Sci. Appl. Ser., vol. 5, edited by P. K. House et al., pp. 175190, AGU, Washington, D. C., 2002.
  • Levish, D. R., D. A. Ostenaa, and D. R. H. O'Connell, A non-inundation approach to paleoflood hydrology for the event-based assessment of extreme flood hazards, paper presented at 1994 Annual Conf. Assoc. of State Dam Safety Off., Boston, Mass., 1994.
  • National Research Council (NRC), Improving American River Flood Frequency Analysis, 120 pp., Natl. Acad. Press, Washington, D. C., 1999.
  • Natural Environment Research Council (NERC), Flood Studies Report, vol. IV, Hydrological Data, 541 pp., Whitefriars, London, 1975.
  • O'Connell, D. R. H., D. A. Ostenaa, D. R. Levish, and R. E. Klinger, Bayesian flood frequency analysis with paleohydrologic bound data, Water Resour. Res., 38(5), 1058, doi:10.1029/2000WR000028, 2002.
  • Pilon, P. J., and K. Adamowski, Asymptotic variance of flood quantile in log Pearson type III distribution with historical information, J. Hydrol., 143, 481503, 1993.
  • Reich, B. M., Log-Pearson type III and Gumbel analysis of floods, in Floods and Droughts, Proceedings of the Second International Symposium in Hydrology, September 11–13, 1972, Fort Collins, CO, edited by E. F. Schulz, V. A. Koelzer, and K. Mamood, pp. 291303, Water Resour. Publ., Highlands Ranch, Colo., 1973.
  • Russell, S. O., Flood probability estimation, J. Hydraul. Div. Am. Soc. Civ. Eng., 108(HY1), 6373, 1982.
  • Salas, J. D., E. E. Wohl, and R. D. Jarrett, Determination of flood characteristics using systematic, historical and paleoflood data, in Coping With Floods, edited by G. Rossi, N. Harmancioglu, and V. Yevjevich, pp. 111134, Kluwer Acad. Publ., Norwell, Mass., 1994.
  • Salas, J. D., R. A. Smith, G. Q. Tabios, and J. H. Heo, Statistical Computer Techniques in Water Resources and Environmental Engineering, draft, Colo. State Univ., Fort Collins, 2003.
  • Sigafoos, R. S., Botanical evidence of floods and flood-plain deposition, U. S. Geol. Surv. Prof. Pap., 485-A, 35 pp., 1964.
  • Stedinger, J. R., Fitting log normal distributions to hydrologic data, Water Resour. Res., 16(3), 481490, 1980.
  • Stedinger, J. R., and V. R. Baker, Surface water hydrology: Historical and paleoflood information, Rev. Geophys., 25(2), 119124, 1987.
  • Stedinger, J. R., and T. A. Cohn, Flood frequency analysis with historical and paleoflood information, Water Resour. Res., 22(5), 273286, 1986.
  • Stedinger, J. R., R. Surani, and R. Therivel, Max user's guide: A program for flood frequency analysis using systematic-record, historical, botanical, physical paleohydrologic and regional hydrologic information using maximum-likelihood techniques, 51 pp., Dep. of Environ. Eng., Cornell Univ., Ithaca, N. Y., 1988.
  • Stedinger, J. R., R. M. Vogel, and E. Foufoula-Georgiou, Frequency analysis of extreme events, in Handbook of Hydrology, edited by D. R. Maidment, pp. 18.118.66, McGraw-Hill, New York, 1993.
  • Sutcliffe, J. V., The use of historical records in flood frequency analysis, J. Hydrol., 96, 159171, 1987.
  • Thomson, M. T., W. B. Gannon, M. P. Thomas, and G. S. Hayes, Historical floods in New England, U. S. Geol. Surv. Water Supply Pap., 1779-M, 105 pp., 1964.
  • Vogel, R. M., W. O. Thomas, and T. A. McMahon, Flood-flow model selection in southwestern United States, J. Water Resour. Plann. Manage., 119(3), 353366, 1993.
  • Wohl, E. E., and Y. Enzel, Data for palaeohydrology, in Global Continental Palaeohydrology, edited by K. J. Gregory, L. Starkel, and V. R. Baker, pp. 2359, John Wiley, Hoboken, N. J., 1995.
  • Yanosky, T. M., Evidence of floods on the Potomac River from anatomical abnormalities in the wood of flood-plain trees, U.S. Geol. Surv. Prof. Pap., 196, 42 pp., 1983.
  • Yanosky, T. M., and R. D. Jarrett, Dendrochronologic Evidence for the Frequency and Magnitude of Paleofloods, in Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology, Water Sci. Appl. Ser., vol. 5, edited by P. K. House et al., pp. 7789, AGU, Washington, D. C., 2002.