SEARCH

SEARCH BY CITATION

References

  • Akiyama, H., H. Tsuruta, and T. Watanabe, N2O and NO emissions from soils after the application of different chemical fertilizers, Chemosphere, 2, 313320, 2000.
  • Bachelet, D., J. Kern, and M. Tolg, Balancing the rice carbon budget in China using spatially-distributed data, Ecol. Modell., 79, 167177, 1995.
  • Brown, L., S. C. Jarvis, and D. Headon, A farm-scale basis for predicting nitrous oxide emissions from dairy farms, Nutr. Cycl. Agroecosyst, 60, 149158, 2001.
  • Brown, L., B. Syed, S. C. Jarvis, R. W. Sneath, V. R. Phillips, K. W. T. Goulding, and C. Li, Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture, Atmos. Environ., 36, 917928, 2002.
  • Buddhaboon, C., Methane emission from various land use types in Mae Cham watershed, Master's thesis, Chiang Mai Univ., Chiang Mai, Thailand, 2000.
  • Buddhaboon, C., D. Mooloi, and A. Jintravet, Methane emission from various land use types in the Mae Chaem Watershed: Modeling of methane production/consumption, Thai J. Agric. Sci., 34(3–4), 175186, 2001.
  • Butterbach-Bahl, K., F. Stange, H. Papen, and C. Li, Regional inventory of nitric oxide and nitrous oxide emissions from forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC, J. Geophys. Res., 106(D24), 34,15534,166, 2001.
  • Cai, Z. C., G. X. Xing, X. Y. Yan, H. Xu, H. Tsuruta, K. Yagi, and K. Minami, Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management, Plant Soil, 196(1), 714, 1997.
  • Cai, Z. C., G. X. Xing, G. Y. Shen, H. Xu, X. Y. Yan, and H. Tsuruta, Measurements of CH4 and N2O emissions from rice fields in Fengqiu, China, Soil Sci. Plant Nutr., 45, 113, 1999.
  • Cai, Z. C., H. Tsuruta, and K. Minami, Methane emissions from rice fields in China: Measurements and influencing factors, J. Geophys. Res., 105(D13), 17,23117,242, 2000.
  • Cao, M., J. B. Dent, and O. W. Heal, Modeling of methane emission from rice paddies, Global Biogeochem. Cycles, 9, 183195, 1995a.
  • Cao, M., J. B. Dent, and O. W. Heal, Methane emissions from China's rice paddies, Agric. Ecosyst. Environ., 55, 129137, 1995b.
  • Cao, M., K. Gregson, S. J. Marshall, J. B. Dent, and O. W. Heal, Global methane from rice paddies, Chemosphere, 33, 879897, 1996.
  • Cao, M., K. Gregson, and S. Marshall, Global methane emission from wetlands and its sensitivity to climate change, Atmos. Environ., 32, 32933299, 1998.
  • Chareonsilp, N., C. Buddhaboon, P. Promnart, R. Wassmann, and R. S. Lantin, Methane emission from deepwater rice fields in Thailand, Nutr. Cycl. Agroecosyst., 58, 121130, 2000.
  • Del Grosso, S., D. Ojima, W. Parton, A. Mosier, G. Peterson, and D. Schimel, Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model, Environ. Pollut., 116, S75S83, 2002.
  • Gou, J., X. H. Zheng, M. X. Wang, and C. S. Li, Modeling N2O emissions from agricultural fields in Southeast China, Adv. Atmos. Sci., 16, 581592, 1999.
  • Goyal, S., K. Sakamoto, and K. Inubuhi, Microbial biomass and activities along and Andosol profile in relation to soil organic matter level, Microbes Environ., 15, 143150, 2000.
  • Granli, T., and O. C. Bøckman, Nitrous oxide from agriculture, Norwegian J. Agric. Sci., 12, 7175, 1994.
  • Guan, G., K. Sakamoto, and T. Yoshida, The relationship between the amount of microbial biomass-N/C and the physicochemical properties of soil (in Japanese with English abstract), Jpn. J. Soil Sci. Plant Nutr., 67, 16, 1997.
  • Holland, E. A., and D. S. Schimel, Ecosystem and physiological controls over methane production in northern wetlands, J. Geophys. Res., 99(D1), 15631571, 1994.
  • Holzapfel-Pschorn, A., and W. Seiler, Contribution of CH4 produced in rice paddies to the global budget, Biometeorology, 9, 5361, 1985.
  • Huang, Y., R. L. Sass, and F. M. Fisher, A semi-empirical model of methane emission from flooded rice paddy soils, Global Change Biol., 4, 247268, 1998.
  • Intergovernmental Panel on Climate Change, Greenhouse Gas Inventory Workbook (Revised 1996 IPCC Guidelines for National Gas Inventories), vol. 2, Bracknell, England, 1997.
  • Jermsawatdipong, P., J. Murase, P. Prabuddham, Y. Hasathon, N. Khomthong, K. Naklang, A. Watanabe, H. Haraguchi, and M. Kimura, Methane emission from plots with differences in fertilizer application in Thailand paddy fields, Soil Sci. Plant Nutr., 40, 6371, 1994.
  • Joulian, C., B. K. C. Patel, B. Ollivier, J. L. Garcia, and P. A. Roger, Methanobacterium oryzae sp nov., a novel methanogenic rod isolated from a Philippines ricefield, Int. J. Syst. Evol. Microbiol., 50, 525528, 2000.
  • Jugsujinda, A., R. D. Delaune, C. W. Lindau, E. Sulaeman, and S. R. Pezeshki, Factors controlling carbon dioxide and methane production in acid sulfate soils, Water Air Soil Pollut., 87, 345355, 1996.
  • Kimble, J. M., C. L. Ping, M. E. Sumner, and L. P. Wilding, Andisols, in Handbook of Soil Science, edited by M. E. Sumner, pp. E209E224, CRC, Boca Raton, Fla., 1999.
  • Kusa, K., T. Sawamoto, and R. Hatano, Nitrous oxide emissions for six years from a Gray Lowland Soil cultivated with onions in Hokkaido, Japan, Nutr. Cycling Agroecosyst., 63(2–3), 239247, 2002.
  • Li, C., Modeling trace gas emissions from agricultural ecosystems, Nutr. Cycl. Agroecosyst., 58, 259276, 2000.
  • Li, C., S. Frolking, and T. A. Frolking, A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity, J. Geophys. Res., 97(D9), 97599776, 1992.
  • Li, C., S. Frolking, and R. Harriss, Modeling carbon biogeochemistry in agricultural soils, Global Biogeochem. Cycles, 8, 237254, 1994.
  • Li, C., V. Narayanan, and R. C. Harriss, Model estimates of nitrous oxide emissions from agricultural lands in the United States, Global Biogeochem. Cycles, 10, 297306, 1996.
  • Li, C., S. Frolking, G. J. Crocker, P. R. Grace, J. Klir, M. Korchens, and P. R. Poulton, Simulating trends in soil organic carbon in long-term experiments using the DNDC model, Geoderma, 81, 4560, 1997.
  • Li, C., J. Aber, F. Stange, K. Butterbach-Bahl, and H. Papen, A process-oriented model of N2O and NO emissions from forest soils: 1. Model development, J. Geophys. Res., 105(D4), 43694384, 2000.
  • Li, C., Y. H. Zhuang, M. Q. Cao, P. Crill, Z. H. Dai, S. Frolking, B. Moore III, W. Salas, W. Z. Song, and X. K. Wang, Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China, Nutr. Cycl. Agroecosyst., 60, 159175, 2001.
  • Li, C., J. J. Qiu, S. Frolking, X. Xiao, W. Salas, B. Moore, S. Boles, Y. Huang, and R. Sass, Changing water management in China's rice paddies and the decline in the growth rate of atmospheric methane 1980–2000, Geophys. Res. Lett., (in review), 2003.
  • Marumoto, T., Turnover of microbial nitrogen in rhizosphere soil of upland crops, in 17th ICSS Transactions, vol. III, pp. 4954, Int. Congress of Soil Sci., Kyoto, Japan, 1990.
  • Matthews, R. B., R. Wassmann, and J. Arah, Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia: I. Model development, Nutr. Cycl. Argoecosyst., 58, 141159, 2000a.
  • Matthews, R. B., R. Wassmann, J. W. Knox, and L. V. Buendia, Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia: IV. Upscaling to national levels, Nutr. Cycl. Argoecosyst., 58, 201217, 2000b.
  • Mosier, A. R., Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere, Plant Soil, 228, 1727, 2001.
  • Sakamoto, K., and N. Hodono, Turnover time of microbial biomass carbon in Japanese upland soils with different texture, Soil Sci. Plant Nutr., 46, 483490, 2000.
  • Sakamoto, K., and Y. Oba, Relationship between the amount of organic material applied and soil biomass content, Soil Sci. Plant Nutr., 37, 387397, 1991.
  • Sawamoto, T., and R. Hatano, N2O flux from a well-structured gray lowland soil cultivated for onion in Hokkaido, Japan: 1. Amount of N2O flux in three years and a comparison with published studies, Jpn. J. Soil Sci. Plant Nutr., 71, 659665, 2000.
  • Sozanska, M., U. Skiba, and S. Metcalfe, Developing an inventory of N2O emissions from British soils, Atmos. Environ., 36, 987998, 2002.
  • Stange, F., K. Butterbach-Bahl, H. Papen, S. Zechmeister-Boltenstern, C. S. Li, and J. Aber, A process-oriented model of N2O and NO emissions from forest soils: 2. Sensitivity analysis and validation, J. Geophys. Res., 105(D4), 43854398, 2000.
  • Wang, Z. P., R. D. DeLaune, P. H. Masscheleyn, and W. H. Patrick Jr, Soil redox and pH effects on methane production in a flooded rice soil, Soil Sci. Soc. Am. J., 51, 382385, 1993a.
  • Wang, Z. P., C. W. Lindau, R. D. Delaune, and W. H. Patrick Jr., Methane emission and entrapment in flooded rice soils as affected by soil properties, Biol. Fertil. Soils, 16, 163168, 1993b.
  • Yagi, K., H. Tsuruta, K. Minami, P. Chairoj, and W. Cholitkul, Methane emission from Japanese and Thai paddy fields, in CH4and N2O Global Emissions and Controls From Rice Fields and Other Agricultural and Industrial Sources, NIAES Ser.2, edited by K. Minami, A. Mosier, and R. Sass, pp. 4151, Yokendo, Tokyo, 1994.
  • Zender, A. G. B., Ecology of methane formation, in Water Pollution Microbiology 2, edited by R. Mitchell, pp. 349376, John Wiley, New York, 1978.