SEARCH

SEARCH BY CITATION

References

  • Aario, L. (1932), Pflanzentopographische un paläogeographische mooruntersuchungen in N-Satakunta, Fennia, 55, 1179.
  • Almendinger, J. C., J. E. Almendinger, and P. H. Glaser (1986), Topographic fluctuations across a spring-fen and raised bog in the Lost River peatland, northern Minnesota, J. Ecol., 74, 393401.
  • Baker, D. G., D. A. Haines, and J. H. Stubb (1967), Climate of Minnesota: V. Precipitation facts normals, and extremes, Univ. Minn. Agric. Exp. Stat. Tech. Bull., 254, 143.
  • Baker, D. G., W. W. Nelson, and E. L. Kuehnast (1979), Climate of Minnesota: XII. The hydrologic cycle and soil water, Univ. Minn. Agric. Exp. Stat. Tech. Bull., 322, 123.
  • Baker, D. G., E. L. Kuehnast, and J. A. Zandlo (1985), Climate of Minnesota: XV. Normal temperatures (1951–1980) and their application, Univ. Minn. Agric. Exp. Stat. Tech. Bull., AD-SB-2777.
  • Beckwith, C. W., and A. J. Baird (2001), Effect of biogenic gas bubbles on water flow through poorly decomposed blanket peat, Water Resour. Res., 37, 551558.
  • Bredehoeft, J. D., R. G. Wolff, W. S. Keys, and E. Shuter (1976), Hydraulic fracturing to determine the regional in situ stress, Piceance Basin, Colorado, Geol. Soc. Am. Bull., 87, 250258.
  • Bridgham, S. D., K. Updegraff, and J. Pastor (1998), Carbon, nitrogen, and phosphorus mineralization in northern wetlands, Ecology, 79, 15451561.
  • Brown, A., S. P. Mathur, and D. J. Kushner (1989), An ombrotrophic bog as a methane reservoir, Global Biogeochem. Cycles, 3, 205213.
  • Brown, D. A. (1998), Gas production from an ombrotrophic bog: Effect of climate change on microbial ecology, Clim. Change, 40, 277284.
  • Cartwright, J. A. (1994), Episodic basin-wide fluid expulsion from geopressured shale sequences in the North Sea basin, Geology, 22, 447450.
  • Chanton, J. P., and C. S. Martens (1988), Seasonal variations in ebullitive flux and carbon isotopic composition of methane in a tidal freshwater estuary, Global Biogeochem. Cycles, 2, 289298.
  • Chanton, J. P., J. Bauer, P. H. Glaser, D. I. Siegel, C. Kelley, S. C. Tyler, E. A. Romanowicz, and A. Lazrus (1995), Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands, Geochim. Cosmochim. Acta, 59, 36633688.
  • Charman, D. J., R. Aravena, and B. G. Warner (1994), Carbon dynamics in a forested peatland in north-eastern Canada, J. Ecol., 82, 5562.
  • Chasar, L. C. (2002), Implications of Environmental Change for Energy Flow Through Natural Systems: Wetlands and Coastal Systems, Ph.D. dissertation, 320 pp., Florida State Univ., Tallahassee, Fla.
  • Chasar, L. S., J. P. Chanton, P. H. Glaser, D. I. Siegel, and J. S. Rivers (2000a), Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland, Global Biogeochem. Cycles, 14, 10951108.
  • Chasar, L. S., J. P. Chanton, P. H. Glaser, and D. I. Siegel (2000b), Methane concentration and stable isotope distribution as evidence of rhizospheric processes: Comparison of a fen and bog in the Glacial Lake Agassiz peatland complex, Ann. Bot. London, 86, 655663.
  • Chason, D. B., and D. I. Siegel (1986), Hydraulic conductivity and related physical properties of peat, Lost River Peatland, northern Minnesota, Soil Sci., 142, 9199.
  • Christensen, T. R. (1993), Methane emissions from Arctic tundra, Biogeochemistry, 21, 117139.
  • Clymo, R. S., and D. M. E. Pearce (1995), Methane and carbon dioxide production in, transport through, and efflux from a peatland, Philos. Trans. R. Soc. London, Ser. A, 350, 249259.
  • Couwenberg, J., and H. Joosten (Eds.) (2002), C. A. Weber and the Raised Bog of Augstumal, IMCG, Tula, Russia.
  • Crill, P. M., K. B. Bartlett, R. C. Harriss, E. Gorham, E. S. Verry, D. I. Sebacher, L. Madzar, and W. Sanner (1988), Methane flux from Minnesota peatlands, Global Biogeochem. Cycles, 2(4), 371384.
  • Crill, P., K. B. Bartlett, and N. T. Roulet (1992), Methane flux from boreal peatlands, Suo, 43, 173182.
  • Devito, K. J., J. M. Waddington, and B. A. Branfireun (1997), Flow reversals in peatlands influenced by local groundwater systems, Hydrol. Processes, 11, 103110.
  • Dinel, H., S. P. Mathur, A. Brown, and M. Lévesque (1988), A field study of the effect of depth on methane production in peatland waters: Equipment and preliminary results, J. Ecol., 76, 10831091.
  • Domenico, P. A., and F. W. Schwartz (1990), Physical and Chemical Hydrogeology, John Wiley, New York.
  • Fechner-Levy, E. J., and H. F. Hemond (1996), Trapped methane volume and potential effects on methane ebullition in a northern peatland, Limnol. Oceanogr., 41, 13751383.
  • Freeze, R. A., and J. A. Cherry (1979), Groundwater, Prentice-Hall, Old Tappan, N. J.
  • Gams, H., and S. Ruoff (1929), Geschichte, Aufbau und Pflanzendecke des Zelaubruches, Monographie eines wachsenden Hochmoores in Ostpreuoen, Schrift. Physik. Ges. Konigsb., LXVI, 1193.
  • Glaser, P. H. (1992), Peat landforms, in Patterned Peatlands of Northern Minnesota, edited by H. E. Wright Jr., and B. A. Coffin, pp. 314, Univ. Minn. Press, Minneapolis, Minn.
  • Glaser, P. H., and J. A. Janssens (1986), Raised bogs in eastern North America: Transitions in landforms and gross stratigraphy, Can. J. Bot., 64, 395415.
  • Glaser, P. H., G. A. Wheeler, E. Gorham, and H. E. Wright Jr. (1981), The patterned peatlands of the Red Lake peatland, northern Minnesota: Vegetation, water chemistry, and landforms, J. Ecol., 69, 575599.
  • Glaser, P. H., D. I. Siegel, E. A. Romanowicz, and Y. P. Shen (1997), Regional linkages between raised bogs and the climate, groundwater, and landscape features of northwestern Minnesota, J. Ecol., 85, 316.
  • Glaser, P. H., P. J. Morin, J. Kamp, N. Tsekos, and D. I. Siegel (1998), Measuring biogenic gas bubbles in peat cores by magnetic resonance imaging, Eos, 79(7), S48.
  • Gorham, E. (1991), Northern peatlands: Role in the carbon cycle and probable responses to climatic warming, Ecol. Appl., 1, 182195.
  • Hobbs, N. B. (1986), Mire morphology and the properties and behaviour of some British and foreign peats, Q. J. Eng. Geol., 19, 780.
  • Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (1997), Global Positioning System, Theory and Practice, Springer-Verlag, New York.
  • Hunt, J. M. (1996), Petroleum Geochemistry and Geology, 2nd ed., Freeman, San Francisco, Calif.
  • Ingebritsen, S. E., and W. E. Sanford (1998), Groundwater in Geologic Processes, Cambridge Univ. Press, New York.
  • Ingram, H. A. P. (1983), Hydrology, in Mires: Swamp, Bog, Fen, and Moor, vol. 4A, General Studies, edited by A. J. P. Gore, pp. 67158, Elsevier Sci., New York.
  • Janssens, J. A., B. C. S. Hansen, P. H. Glaser, and C. W. Barnosky (1992), Development of a raised-bog complex in northern Minnesota, in Patterned Peatlands of Northern Minnesota, edited by H. E. Wright Jr., and B. A. Coffin, pp. 189221, Univ. of Minn. Press, Minneapolis, Minn.
  • Landva, A. O., and P. E. Pheeney (1980), Peat fabric and structure, Can. Geotech. J., 17, 416435.
  • Martens, C. S., and R. A. Berner (1977), Interstitial water chemistry of anoxic Long Island Sound sediments: 1. Dissolved gases, Limnol. Oceanogr., 22, 1025.
  • Mathews, E. (2000), Wetlands, in Atmospheric Methane: Its Role in the Global Environment, edited by M. A. K. Khalil, pp. 202233, Springer-Verlag, New York.
  • Moore, T. R., and N. T. Roulet (1993), Methane flux: Water table relations in northern wetlands, Geophys. Res. Lett., 20, 587590.
  • Moore, T. R., N. Roulet, and R. Knowles (1990), Spatial and temporal variations of methane flux from subarctic/northern boreal fens, Global Biogeochem. Cycles, 4, 2946.
  • Price, J. S., and S. M. Schlotzhauer (1999), Importance of shrinkage and compression in determining water storage changes in peat: The case of a mined peatland, Hydrol. Processes, 13, 25912601.
  • Quinton, W. L., and N. T. Roulet (1998), Spring and summer runoff hydrology of a subarctic patterned wetland, Arct. Alp. Res., 30, 285294.
  • Reynolds, W. D., D. A. Brown, S. P. Mathur, and R. P. Overend (1992), Effect of in-situ gas accumulation on the hydraulic conductivity of peat, Soil Sci., 153, 397408.
  • Roberts, S. J., and J. A. Nunn (1995), Episodic fluid expulsion from geopressured sediments, Mar. Petrol. Geol., 12, 195204.
  • Romanowicz, E. A., D. I. Siegel, and P. H. Glaser (1993), Hydraulic reversals and episodic methane emissions during drought cycles in mires, Geology, 21, 231234.
  • Romanowicz, E. A., D. I. Siegel, J. P. Chanton, and P. H. Glaser (1995), Temporal variations in dissolved methane deep in the Lake Agassiz peatlands, Minnesota (USA), Global Biogeochem. Cycles., 9, 197212.
  • Rosenberry, D. O., P. H. Glaser, D. I. Siegel, and E. D. Weeks (2003), Use of hydraulic head to estimate volumetric gas content and ebullition flux in northern peatlands, Water Resour. Res., 39(3), 1066.
  • Roulet, N. T. (1991), Surface level and water table fluctuations in a subarctic fen, Arct. Alp. Res., 23, 303310.
  • Siegel, D. I., and P. H. Glaser (1987), Groundwater flow in a bog-fen complex, Lost River peatland, northern Minnesota, J. Ecol., 75, 743754.
  • Siegel, D. I., A. S. Reeve, P. H. Glaser, and E. Romanowicz (1995), Climate-driven flushing of pore water in humified peat, Nature, 374, 531533.
  • Siegel, D. I., J. P. Chanton, P. H. Glaser, L. S. Chasar, and D. O. Rosenberry (2001), Estimating methane production rates in bogs and landfills by deuterium enrichment of pore-water, Global Biogeochem. Cycles, 15, 967975.
  • Simpson, J. A., and E. S. C. Weiner (Eds.) (1989), Oxford English Dictionary, 2nd ed., Oxford Univ. Press, New York.
  • Swain, F. M. (1986), Composition of marsh gases in the central and eastern United States, Appl. Geochem., 1, 301305.
  • Swain, F. M., B. D. Johnson, and J. J. Pittman (1977), Environmental aspects of marsh gas, in Interdisciplinary Studies of Peat and Coal Origins, edited by P. H. Given, and A. D. Cohen, Microfilm Publ. 7, Geol. Soc. of Am., Boulder, Colo.
  • Thomson, P. V. (1924), Influence of eruption of gas on the surface patterns of bogs, Bot. Arch., 8, 12.
  • Torrence, C., and G. P. Compo (1998), A practical guide of wavelet analysis, Bull Am. Meteorol. Soc., 79, 6178.
  • Vitt, D. H., L. A. Halsey, and S. C. Zoltai (1994), The bog landforms of continental western Canada in relation to climate and permafrost patterns, Arct. Alp. Res., 26, 113.
  • Waddington, J. M. (1995), Hydrological and biogeochemical controls of carbon storage and fluxes (CO2, CH4, and dissolved) in a boreal peatland, Ph.D. dissertation, York Univ., North York, Ont., Canada.
  • Waddington, J. M., and N. T. Roulet (1997), Groundwater flow and dissolved carbon movement in a boreal peatland, J. Hydrol., 191, 122138.
  • Weber, C. A. (1902), Über die Vegetation und Entstehung des Hochmoors von Augstumal im Memeldelta mit vergleichenden Ausblicken auf andere Hochmoore der Erde, Paul Parey, Berlin.
  • Wieder, R. K., J. B. Yavitt, and G. E. Lang (1990), Methane production and sulfate reduction in 2 Appalachian peatlands, Biogeochemistry, 10, 81104.
  • Wright, H. E.Jr. (1972), Physiography of Minnesota, in Geology of Minnesota: A Centennial Volume, edited by P. K. Sims, and G. B. Morey, pp. 515560, Minn. Geol. Surv., Minneapolis, Minn.
  • Yavitt, J. B., and G. E. Lang (1990), Methane production in contrasting wetland sites- Response to organic-chemical components of peat and to sulfate reduction, Geomicrobiol. J., 8, 2746.
  • Yavitt, J. B., C. J. Williams, and R. K. Wieder (1997), Production of methane and carbon dioxide in peatland ecosystems across North America: Effects of temperature, aeration and organic chemistry of peat, Geomicrobiol. J., 14, 299316.