SEARCH

SEARCH BY CITATION

References

  • Alm, J., S. Juutinen, S. Saarnio, J. Silvola, and P. J. Martikainen, Temporal and spatial variations in CH4 emissions of flooded meadows and vegetated hydrolittoral, in Northern Peatlands in Global Climatic Change, edited by R. Laiho, J. Laine, and H. Vasander, pp. 7176, Finn. Res. Programme on Clim. Change, Helsinki, 1996.
  • Alm, J., A. Talanov, S. Saarnio, J. Silvola, E. Ikkonen, H. Aaltonen, H. Nyäknen, and P. J. Martikainen, Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland, Oecologia, 110, 423431, 1997.
  • Arkebauer, T. J., J. P. Chanton, S. B. Verma, and J. Kim, Field measurements of internal pressurization in Phragmites australis (Poaceae) and implications for regulation of methane emissions in a midlatitude prairie wetland, Am. J. Bot., 88, 653658, 2001.
  • Arvola, L., P. Kortelainen, I. Bergström, P. Kankaala, A. Ojala, H. Pajunen, T. Käki, S. Mäkelä, and M. Rantakari, Carbon pathways through boreal lakes: A multi-scale approach (CARBO), in Understanding the Global System, The Finnish Perspective, edited by J. Käyhkö, and L. Talve, pp. 97106, Finn. Global Change Res. Programme, Turku, 2002.
  • Bartlett, K. B., P. M. Crill, R. L. Sass, R. C. Harriss, and N. B. Dise, Methane emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska, J. Geophys. Res., 97, 16,64516,660, 1992.
  • Bellisario, L. M., J. L. Bubier, T. R. Moore, and J. P. Chanton, Controls on CH4 emissions from a northern peatland, Global Biogeochem. Cycles, 13, 8191, 1999.
  • Boelman, N. T., M. Stieglitz, H. Rueth, M. Sommerkorn, K. L. Griffin, G. R. Shaver, and J. Gamon, Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra, Oecologia, 135, 414421, 2003.
  • Brix, H., B. K. Sorrell, and B. Lorenzen, Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat. Bot., 69, 313324, 2001.
  • Bubier, J. L., T. R. Moore, and N. T. Roulet, Methane emission from wetlands in the midboreal region of northern Ontario, Canada, Ecology, 74, 240254, 1993.
  • Bubier, J. L., T. R. Moore, L. Bellisario, N. Comer, and P. Crill, Ecological controls on methane emission from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada, Global Biogeochem. Cycles, 9, 455470, 1995.
  • Capone, D. G., and R. P. Kiene, Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism, Limnol. Oceanogr., 33, 725749, 1988.
  • Casper, P., Methane production in lakes of different trophic state, Arch. Hydrobiol., 37, 149154, 1992.
  • Chanton, J. P., J. E. Bauer, P. A. Glaser, D. I. Siegel, C. A. Kelley, S. C. Tyler, E. H. Romanowicz, and A. Lazarus, Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands, Geochim. Cosmochim. Acta, 59, 36633668, 1995.
  • Chasar, L. S., J. P. Chanton, P. H. Glaser, D. I. Siegel, and J. S. Rivers, Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland, Global Biogeochem. Cycles, 14, 10951108, 2000.
  • Christensen, T. R., N. Panikov, M. Mastepanov, A. Joabsson, A. Stewart, M. Öquist, M. Sommerkorn, S. Reynaud, and B. Svensson, Biotic controls on CO2 and CH4 exchange in wetland-A closed environment study, Biogeochemistry, 64, 337354, 2003.
  • Dacey, J. W. H., and M. J. Klug, Methane efflux from lake sediments through water lilies, Science, 203, 12531255, 1979.
  • Environment Canada, 1996 in review: An assessment of new research developments relevant to the science of climate change, CO2/Clim. Rep. 98-1, Downsview, Ontario, Canada, 1998.
  • Fallon, R. D., S. Harrits, R. S. Hanson, and T. D. Brock, The role of methane in internal carbon cycling in Lake Mendota during summer stratification, Limnol. Oceanogr., 25, 357360, 1980.
  • Finnish Standards Association SFS, Determination of total residue and total fixed residue in water, sludge and sediment, report, Helsinki, 1990.
  • Hamilton, J. D., C. A. Kelly, J. W. M. Rudd, R. H. Hesslein, and N. T. Roulet, Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs), J. Geophys. Res., 99, 14951510, 1994.
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiasu (Eds.), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), 944 pp., Cambridge Univ. Press, New York, 2001.
  • Huang, Y., R. L. Sass, and F. M. Fisher Jr., Methane emission from Texas rice paddy soils: 2. Seasonal contribution of rice biomass production to CH4 emission, Global Change Biol., 3, 491500, 1997.
  • Huttunen, J. T., T. S. Väisänen, M. Heikkinen, S. Hellsten, H. Nykänen, O. Nenonen, and P. J. Martikainen, Exchange of CO2, CH4, and N2O between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests, Plant Soil, 242, 137146, 2002a.
  • Huttunen, J. T., et al., Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland, Global Biogeochem. Cycles, 16(1), 1003, doi:10.1029/2000GB001316, 2002b.
  • Huttunen, J. T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, J. Silvola, and P. J. Martikainen, Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 52, 609621, 2003a.
  • Huttunen, J. T., J. Alm, E. Saarijärvi, K. M. Lappalainen, J. Silvola, and P. J. Martikainen, Contribution of winter to the annual CH4 emission from a eutrophied boreal lake, Chemosphere, 50, 247250, 2003b.
  • Hyvönen, T., A. Ojala, P. Kankaala, and P. J. Martikainen, Methane release from stands of water horsetail (Equisetum fluviatile) in a boreal lake, Freshwater Biol., 40, 275284, 1998.
  • Ilmavirta, V., and H. Toivonen, Comparative studies on macrophytes and phytoplankton in ten small, brown-water lakes on different trophic status, Aqua Fennica, 16, 125142, 1986.
  • Juutinen, S., J. Alm, P. J. Martikainen, and J. Silvola, Effects of spring flood and water level draw-down on methane dynamics in the littoral zone of boreal lakes, Freshwater Biol., 46, 855869, 2001.
  • Juutinen, S., J. Alm, T. Larmola, J. T. Huttunen, M. Morero, S. Saarnio, P. J. Martikainen, and J. Silvola, Methane (CH4) release from littoral wetlands of boreal lakes during an extended flooding period, Global Change Biol., 9, 413424, 2003.
  • Kankaala, P., A. Ojala, and T. Käki, Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake, Biogeochemistry, in press, 2003.
  • Kansanen, A., R. Niemi, and K. Överlund, Pääjärven makrofyytit (Macrophytes in L. Pääjärvi), Luonnontutkija, 78, 111118, 1974.
  • Karlsson, K.-P., (Ed.), Atlas of Finland, append. 136, Water, 31 pp., Natl. Board of Survey, Helsinki, 1986.
  • Kelly, C. A., and D. P. Chynoweth, The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis, Limnol. Oceanogr., 26, 891897, 1981.
  • Kelly, C. A., et al., Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir, Environ. Sci. Technol., 31, 13341344, 1997.
  • Kim, J., S. B. Verma, and D. P. Billesbach, Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: Effect of growth stage and plant-mediated transport, Global Change Biol., 5, 433440, 1998.
  • Kling, G. W., G. W. Kipphut, and M. C. Miller, The flux of CO2 and CH4 from lakes and rivers in arctic Alaska, Hydrobiologia, 240, 2336, 1992.
  • Kuusisto, E., L. Kauppi, and P. Heikinheimo (Eds.), Ilmastonmuutos ja Suomi (Climate Change and Finland), 265 pp., Helsinki Univ. Press, Helsinki, 1996.
  • Larmola, T., J. Alm, S. Juutinen, P. J. Martikainen, and J. Silvola, Ecosystem CO2 exchange and plant biomass in the littoral zone of a boreal lake, Freshwater Biol., 48, 12951310, 2003.
  • Liikanen, A., J. T. Huttunen, K. Valli, and P. J. Martikainen, Methane cycling in the sediment and water column of mid-boreal hyper-eutrophic Lake Kevätön, Finland, Arch. Hydrobiol., 154, 585603, 2002.
  • Martens, C. S., C. A. Kelley, and J. P. Chanton, Carbon and hydrogen isotopic characterisation of methane from wetlands and lakes of the Yukon-Kuskokwim Delta, Western Alaska, J. Geophys. Res., 97, 16,68916,701, 1992.
  • McMichael, C. E., A. S. Hope, D. A. Stow, J. B. Fleming, G. Vourlitis, and W. Oechel, Estimating CO2 exchange at two sites in arctic tundra ecosystems during the growing season using a spectral vegetation index, Int. J. Remote Sens., 20, 683698, 1999.
  • Michmerhuizen, C. M., R. G. Striegl, and M. E. McDonald, Potential methane emission from north-temperate lakes following ice melt, Limnol. Oceanogr., 41, 985991, 1996.
  • Moore, T. R., and M. Dalva, The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils, J. Soil Sci., 44, 651664, 1993.
  • Moosavi, S. C., and P. M. Crill, Controls on CH4 and CO2 emissions along two moisture gradients in the Canadian Boreal zone, J. Geophys. Res., 102, 29,26129,277, 1997.
  • Morrissey, L. A., and G. P. Livingston, Methane emissions from Alaskan Arctic tundra: An assessment of local spatial variability, J. Geophys. Res., 97, 16,66116,670, 1992.
  • Nybom, C., Kevättömän vesi- ja rantakasvillisuus, Vesi-ja ympäristöhallituksen monistesarja 279, 29 pp., Natl. Board of Waters, Helsinki, 1990.
  • Nykänen, H., J. Alm, J. Silvola, K. Tolonen, and P. J. Martikainen, Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates, Global Biogeochem. Cycles, 12, 5369, 1998.
  • Phelps, A. R., K. M. Peterson, and M. O. Jeffries, Methane efflux from high-latitude lakes during spring ice melt, J. Geophys. Res., 103, 29,02929,036, 1998.
  • Raatikainen, M., and E. Kuusisto, The number and surface area of the lakes in Finland (in Finnish), Terra, 102, 97110, 1990.
  • Reeburgh, W. S., J. Y. King, S. K. Regli, G. W. Kling, N. A. Auerbach, and D. A. Walker, A CH4 emission estimate for the Kuparuk River basin, Alaska, J. Geophys. Res., 103, 29,00529,013, 1998.
  • Riera, J. L., J. E. Schindler, and T. Kratz, Seasonal dynamics of carbon dioxide and methane in two clear-water and two bog lakes in northern Wisconsin, U.S.A. Can. J. Fish. Aquat. Sci., 56, 265274, 1999.
  • Roulet, N. T., R. Ash, and T. R. Moore, Low boreal wetlands as a source of atmospheric methane, J. Geophys. Res., 97, 37393749, 1992.
  • Roulet, N. T., P. M. Crill, N. T. Comer, A. Dove, and R. A. Boubonniere, CO2 and CH4 flux between a boreal beaver bond and the atmosphere, J. Geophys. Res., 102, 29,31329,319, 1997.
  • Rudd, J. W. M., and R. D. Hamilton, Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism, Limnol. Oceanogr., 23, 337348, 1978.
  • Saarnio, S., Carbon gas (CO2, CH4) exchange in a boreal oligotrophic mire — Effects of raised CO2 and NH4NO3 supply, Ph.D. thesis, University of Joensuu, 29 pp. and append., Joensuu, 1999.
  • Saarnio, S., J. Alm, J. Silvola, A. Lohila, H. Nykänen, and P. J. Martikainen, Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen, Oecologia, 110, 414422, 1997.
  • Schulz, S., and R. Conrad, Effect of algal deposition on acetate and methane concentrations in the profundal sediment of a deep lake (Lake Constance), FEMS Microbiol. Ecol., 16, 251260, 1995.
  • Schütz, H., P. Schröder, and H. Rennenberg, Role of plants in regulating the methane flux to the atmosphere, in Trace Gas Emissions by Plants, edited by T. D. Sharkey, E. A. Holland, and H. A. Mooney, pp. 2963, Academic, San Diego, Calif., 1991.
  • Silvola, J., P. Martikainen, and H. Nykänen, A mobile automatic gas chromatograph system to measure CO2, CH4, and N2O fluxes from soil in the field, Suo, 43, 263266, 1992.
  • Smith, L. K., and W. M. Lewis Jr., Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies, Global Biogeochem. Cycles, 6, 323338, 1992.
  • Striegl, R. G., and C. M. Michmerhuizen, Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes, Limnol. Oceanogr., 43, 15191529, 1998.
  • Toivonen, H., and T. Lappalainen, Ecology and production of aquatic macrophytes in the oligotrophic, mesohumic Lake Suomunjärvi, Eastern Finland, Ann. Bot. Fenn., 17, 6585, 1980.
  • van der Nat, F.-J., and J. J. Middelburg, Methane emission from tidal freshwater marshes, Biogeochemistry, 49, 103121, 2000.
  • Wetzel, R. G., Gradient-dominant ecosystems: Sources and regulatory functions of dissolved organic matter in freshwater ecosystems, Hydrobiologia, 229, 181198, 1992.
  • Wetzel, R. G., Limnology: Lake and River Ecosystems, 1006 pp., Academic, San Diego, Calif., 2001.
  • Whiticar, M. J., Can stable isotopes and global budgets be used to constrain atmospheric methane budgets, in Atmospheric Methane, its Role in the Global Environment, edited by M. A. K. Khalil, pp. 6385, Springer-Verlag, New York, 2000.
  • Whiting, G. J., and J. P. Chanton, Primary production control of methane emission from wetlands, Nature, 364, 794795, 1993.
  • Whiting, G. J., and J. P. Chanton, Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanism, Aquatic Bot., 54, 237253, 1996.
  • Whiting, G. J., J. P. Chanton, D. S. Bartlett, and J. D. Happel, Relationships between CH4 emission, biomass, and CO2 exchange in a subtropical grassland, J. Geophys. Res., 96, 13,06713,071, 1991.
  • Windsor, J., T. R. Moore, and N. T. Roulet, Episodic fluxes of methane from subarctic fens, Can. J. Soil Sci., 72, 441452, 1992.
  • Zar, J. H., Biostatistical Analysis, 663 pp., Prentice-Hall, N. J., 1999.
  • Zimov, S. A., Y. V. Voropaev, I. P. Semiletov, S. P. Davidov, S. F. Prosiannikov, F. S. Chapin III, M. C. Chapin, S. Trumbore, and S. Tyler, North Siberian lakes: A methane source fueled by Pleistocene carbon, Science, 277, 800802, 1997.