SEARCH

SEARCH BY CITATION

References

  • Andres, R. J., G. Marland, I. Fung, and E. Matthews (1996), A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990, Global Biogeochem. Cycles, 10(3), 419429.
  • Baker, D. F. (2001), Sources and sinks of atmospheric CO2 estimated from batch least-squares inversions of CO2 concentration measurements, Ph.D. dissertation, Princeton Univ., Princeton, N. J.
  • Bousquet, P., P. Ciais, P. Peylin, M. Ramonet, and P. Monfrey (1999), Inverse modeling of annual atmospheric CO2 sources and sinks: 1. Method and control inversion, J. Geophys. Res., 104(D21), 26,16126,178.
  • Bousquet, P., P. Peylin, P. Ciais, C. Le Quéré, P. Friedlingstein, and P. Tans (2000), Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290, 13421346.
  • Ciais, P., P. P. Tans, M. Troliier, J. W. C. White, and R. J. Francey (1995), A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2, Science, 269, 10981102.
  • Denning, A. S., M. Holzer, K. R. Gurney, M. Heimann, R. M. Law, P. J. Rayner, I. Y. Fung, S. Fan, S. Taguchi, P. Friedlingstein, Y. Balkanski, J. Taylor, M. Maiss, and I. Levin (1999), Three-dimensional transport and concentration of SF6: A model intercomparison study (TransCom 2), Tellus, Ser. B, 51, 266297.
  • Engelen, R. J., A. S. Denning, and K. R. Gurney (2002), On error estimation in atmospheric CO2 inversions, J. Geophys. Res., 107(D22), 4635, doi:10.1029/2002JD002195.
  • Enting, I. (2002), Inverse Problems in Atmospheric Constituent Transport, Cambridge Univ. Press, New York.
  • Enting, I. G., C. M. Trudinger, and R. J. Francey (1995), A synthesis inversion of the concentration and δ13C of atmospheric CO2, Tellus, Ser. B, 47, 3552.
  • Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, and P. Tans (1998), A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models, Science, 282, 442446.
  • GLOBALVIEW-CO2 (2000), Cooperative Atmospheric Data Integration Project—Carbon Dioxide [CD-ROM], NOAA Clim. Model. and Diag. Lab., Boulder, Colo.
  • Goulden, M. L., et al. (1998), Sensitivity of boreal forest carbon balance to soil thaw, Science, 279, 214217.
  • Gurney, K., R. Law, P. Rayner, and A. S. Denning (2000), TransCom 3 experimental protocol, Pap. 707, Dept. of Atmos. Sci., Colo. State Univ. (Available at http://transcom.colostate.edu/TransCom_3/transcom_3.html).
  • Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415, 626630.
  • Gurney, K. R., et al. (2003), Transcom 3 CO2 Inversion Intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information, Tellus, Ser. B, 55, 555579.
  • Houghton, R. A., E. A. Davidson, and G. M. Woodwell (1998), Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance, Global Biogeochem. Cycles, 12(1), 2534.
  • Kaminski, T., M. Heimann, and R. Giering (1999), A coarse grid three-dimensional global inverse model of the atmospheric transport: 2. Inversion of the transport of CO2 in the 1980s, J. Geophys. Res., 104(D15), 18,55518,581.
  • Kaminski, T., P. J. Rayner, M. Heimann, and I. G. Enting (2001), On aggregation errors in atmospheric transport inversion, J. Geophys. Res., 106(D5), 47034715.
  • Law, R. M., et al. (1996), tions in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions, Global Biogeochem. Cycles, 10(4), 783796.
  • Law, R. M., Y.-H. ChenK. R. Gurney, and TransCom 3 modelers (2003), TransCom 3 CO2 inversion intercomparison: 2. Sensitivity of annual mean results to data choices, Tellus, Ser. B, 55, 580595.
  • Metzl, N., C. Brunet, A. Jabaud-Jan, A. Poisson, and B. Schauer (2001), Summer and winter air-sea CO2 fluxes in the Southern Ocean, paper presented at Sixth International Carbon Dioxide Conference, Organizing Comm. of 6th Int. Carbon Dioxide Conf., Sendai, Japan.
  • Pacala, S. W., et al. (2001), Convergence of land- and atmosphere-based U.S. carbon sink estimates, Science, 292, 23162320.
  • Peylin, P., D. Baker, J. Sarmiento, P. Ciais, and P. Bousquet (2002), Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data, J. Geophys. Res., 107(D19),4385, doi:10.1029/2001JD000857.
  • Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Klooster (1993), Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7(4), 811841.
  • Prentice, I. C., G. Farquhar, M. Fashm, M. Goulden, M. Heimann, V. Jaramillo, H. Kheshgi, C. Le Quéré, and R. J. Scholes (2001), The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 183237, Cambridge Univ. Press, New York.
  • Randerson, J. T., M. V. Thompson, T. J. Conway, I. Y. Fung, and C. B. Field (1997), The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide, Global Biogeochem. Cycles, 11, 535560.
  • Rayner, P. J., I. G. Enting, R. J. Francey, and R. L. Langenfelds (1999), Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations, Tellus, Ser. B, 51, 213232.
  • Rödenbeck, C., S. Houweling, M. Gloor, and M. Heimann (2003), Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport, Tellus, Ser. B, 55, 488497.
  • Schimel, D., D. Alves, I. Enting, M. Heimann, F. Joos, D. Raynaud, and T. Wigley (1996), CO2 and the carbon cycle, in Climate Change 1995: The Science of Climate Change, Contribution of WG1 to the Second Assessment Report of the IPCC, edited by J. T. Houghton et al., pp. 6586, Cambridge Univ. Press, New York.
  • Takahashi, T., R. H. Wanninkhof, R. A. Feely, R. F. Weiss, D. W. Chipman, N. Bates, J. Olafsson, C. Sabine, and S. C. Sutherland (1999). Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea–air pCO2 difference, paper presented at 2nd CO2 in Oceans Symposium, Cent. for Global Environ. Res. Natl. Inst. for Environ. Stud. Tsukuba, Japan.
  • Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational constraints on the global atmospheric CO2 budget, Science, 247, 14311438.
  • Tarantola, A. (1987), The least-squares (12-norm) criterion, in Inverse Problem Theory: Methods for Data Fitting and Parameter Estimation, chap. 4, pp. 187287, Elsevier Sci., New York.