SEARCH

SEARCH BY CITATION

References

  • Akiyama, H., H. Tsuruta, and T. Watanabe (2000), N2O and NO emissions from soils after the application of different chemical fertilizers, Chemosphere Global Change Sci., 2, 313320.
  • Bouwman, A. F. (1990), Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere, in Soils and the Greenhouse Effect, edited by A. F. Bouwman, pp. 61127, John Wiley, Hoboken, N. J.
  • Bronson, K. F., A. R. Mosier, and S. R. Bishnoi (1992), Nitrous oxide emissions in irrigated corn as affected by nitrification inhibitors, Soil Sci. Soc. Am. J., 56, 161165.
  • Bronson, K. F., H.-U. Neue, U. Singh, and E. B. Abao Jr. (1997), Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. residue, nitrogen, and water management, Soil Sci. Soc. Am. J., 61, 981987.
  • Cai, Z., G. Xing, X. Yan, H. Xu, H. Tsuruta, K. Yagi, and K. Minami (1997), Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management, Plant Soil, 196, 714.
  • Cai, Z., G. Xing, G. Shen, H. Xu, X. Yan, H. Tsuruta, K. Yagi, and K. Minami (1999), Measurements of CH4 and N2O emissions from rice paddies in Fengqiu, China, Soil Sci. Plant Nutr., 45(1), 113.
  • Chen, G. X., G. H. Huang, B. Huang, K. W. Yu, J. Wu, and H. Xu (1997), Nitrous oxide and methane emissions from soil-plant systems, Nutr. Cycling Agroecosyst., 49, 4145.
  • Cheng, W., K. Chander, and K. Inubushi (2000), Effect of elevated CO2 and temperature on methane production and emission from submerged soil microcosm, Nutr. Cycling Agroecosyst., 58, 339347.
  • Corton, T. M., J. B. Bajita, F. S. Grospe, R. R. Pamplona, C. A. Asis Jr., R. Wassmann, R. S. Lantin, and L. V. Buendia (2000), Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines), Nutr. Cycling Agroecosyst., 58, 3753.
  • Dobbie, K. E., I. P. McTaggart, and K. A. Smith (1999), Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors, J. Geophys. Res., 104(D21), 26,89126,899.
  • Food and Agriculture Organization (FAO) (2002), Fertilizer Use by Crop, 5th ed., United Nations, Rome.
  • Fung, I., J. John, J. Lerner, E. Mathews, M. Prather, L. P. Steele, and P. J. Fraser (1991), Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96(D7), 13,03313,065.
  • Hein, R., P. J. Crutzen, and M. Heimann (1997), An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 11, 4376.
  • Hillel, D. (1998), Movement and exchange of gases in the soil, in Environmental Soil Physics, edited by D. Hillel, pp. 291305, Academic, San Diego, Calif.
  • Hutchinson, G. L., and E. A. Davidson (1993), Processes for production and consumption of gaseous nitrogen oxides in soil, in Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, edited by L. A. Harper et al., pp. 7993, Am. Soc. of Agron., Madison, Wis.
  • Ibaraki Prefectural Agricultural Center (1999), Guideline of Food Crop Cultivation (in Japanese), Ibaraki, Japan.
  • Intergovernmental Panel on Climate Change (IPCC) (1996), Climate Change 1995: The Science of Climate Change, Cambridge Univ. Press, New York.
  • Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis, Cambridge Univ. Press, New York.
  • Kroeze, C., A. Mosier, and L. Bouwman (1999), Closing the global N2O budget: A retrospective analysis 1500–1994, Global Biogeochem. Cycles, 13, 18.
  • Kusa, K., T. Sawamoto, and R. Hatano (2002), Nitrous oxide emissions for 6 years from a gray lowland soil cultivated with onions in Hokkaido, Japan, Nutr. Cycling Agroecosyst., 63, 239247.
  • Lu, W. F., W. Chen, B. W. Duan, W. M. Guo, Y. Lu, R. S. Lantin, R. Wassmann, and H. U. Neue (2000), Methane emissions and mitigation options in irrigated rice fields in southeast China, Nutr. Cycling Agroecosyst., 58, 6573.
  • Minami, K. (1987), Emission of nitrous oxide (N2O) from agro-ecosystem, Jpn. Agric. Res. Q., 21, 2227.
  • Minami, K., and S. Fukushi (1984), Methods for measuring N2O flux from water surface and N2O dissolved in water from agricultural land, Soil Sci. Plant Nutr., 30(4), 495502.
  • Mosier, A. R., and L. Mack (1980), Gas chromatographic system for precise, rapid analysis of nitrous oxide, Soil Sci. Soc. Am. J., 44, 11211123.
  • Mosier, A. R., C. Kroeze, O. Nevison, S. Oenema, S. Seitzinger, and O. van Cleemput (1998), Closing the global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle - OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology, Nutr. Cycling Agroecosyst., 52, 225248.
  • Olivier, J. G. J., A. F. Bouwman, K. W. van der Hoek, and J. J. M. Berdowski (1998), Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990, Environ. Pollut., 102, (suppl. 1), 135148.
  • Patrick, W. H.Jr., D. S. Mikkelsen, and B. R. Wells (1985), Plant nutrient behavior in flooded soil, in Fertilizer Technology and Use, 3rd ed., edited by O. P. Engelstad, pp. 197228, Soil Sci., Soc. of Am., Madison, Wis.
  • Sass, R. L., F. M. Fisher, and Y. B. Wang (1992), Methane emission from rice fields: The effect of floodwater management, Global Biogeochem. Cycles, 6, 249262.
  • Sass, R. L., F. M. Fisher Jr., and J. A. Andrews (2002), Spatial variability in methane emissions from a Texas rice field with some general implications, Global Biogeochem. Cycles, 16(1), 1015, doi:10.1029/2000GB001355.
  • Suzuki, A. (1997), Fertilization of Rice in Japan, edited by A. Suzuki, Jpn. FAO Assoc., Tokyo.
  • Tsuruta, H., K. Kanda, and T. Hirose (1997), Nitrous oxide emission from a rice paddy field in Japan, Nutr. Cycling Agroecosyst., 49, 5158.
  • Wang, Z. Y., Y. C. Xu, Z. Li, Y. X. Guo, R. Wassmann, H. U. Neue, R. S. Lantin, L. V. Buendia, Y. P. Ding, and Z. Z. Wang (2000), A four year record of methane emissions from irrigated rice fields in the Beijing region of China, Nutr. Cycling Agroecosyst., 58, 5563.
  • Wassmann, R., R. S. Lantin, H. U. Neue, L. V. Buendia, T. M. Corton, and Y. Lu (2000), Characterization of methane emissions from rice fields in Asia, III, Mitigation options and future research needs, Nutr. Cycling Agroecosyst., 58, 2336.
  • Watanabe, A., and M. Kimura (1999), Influence of chemical properties of soils on methane emission from rice paddies, Commun. Soil Sci. Plant Anal., 30, 24492463.
  • Watanabe, A., T. Takeda, and M. Kimura (1999), Evaluation of origins of CH4 carbon emitted from rice paddies, J. Geophys. Res., 104(D19), 23,62323,629.
  • World Meteorological Organization (1999), Scientific Assessment of Ozone Depletion: 1998, World Meteorol. Org., Geneva.
  • Xu, H., X. C. Cai, Z. J. Jia, and H. Tsuruta (2000), Effect of land management in winter crop season on CH4 emission during the following flooded and rice-growing period, Nutr. Cycling Agroecosyst., 58, 327332.
  • Yagi, K. (2002), Methane emissions in rice, mitigation options for, in Encyclopedia of Soil Science, edited by R. Lal, pp. 814818, Marcel Dekker, New York.
  • Yagi, K., and K. Minami (1990), Effect of organic matter application on methane emission from some Japanese paddy fields, Soil Sci. Plant Nutr., 36(4), 599610.
  • Yagi, K., H. Tsuruta, K. Kanda, and K. Minami (1996), Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring, Global Biogeochem. Cycles, 10, 255267.