SEARCH

SEARCH BY CITATION

References

  • Agard, P., P. Monie, L. Jolivet, and B. Goffe (2002), Exhumation of the Schistes Lustres complex; in situ laser probe 40Ar/39Ar constraints and implications for the Western Alps, J. Metamorph. Geol., 20, 599618.
  • Altabet, M., and R. Francois (1994), Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization, Global Biogeochem. Cycles, 8, 103116.
  • Bebout, G. E. (1995), The impact of subduction-zone metamorphic processes on the mass-balance of mantle-ocean chemical exchange, Chem. Geol., 126, 191218.
  • Bebout, G. E. (1997), Nitrogen-isotope tracers of high-temperature fluid-rock interactions: Case study of the Catalina Schist, California, Earth Planet. Sci. Lett., 151, 7795.
  • Bebout, G. E., and M. L. Fogel (1992), Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: Implications for metamorphic devolatilization history, Geochim. Cosmochim. Acta, 56, 21392149.
  • Bebout, G. E., and E. Nakamura (2003), Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling, Geology, 31, 407410.
  • Bebout, G. E., and S. J. Sadofsky (2004), δ15N analyses of ammonium-rich silicate minerals by sealed-tube extractions and dual inlet, viscous-flow mass spectrometry, in Handbook of Stable Isotope Techniques, edited by P. de. Groot, in press, Elsevier Sci., New York.
  • Bebout, G. E., J. G. Ryan, W. P. Leeman, and A. E. Bebout (1999a), Fractionation of trace elements during subduction-zone metamorphism: Impact of convergent margin thermal evolution, Earth Planet. Sci. Lett., 171, 6381.
  • Bebout, G. E., D. C. Cooper, A. D. Bradley, and S. J. Sadofsky (1999b), Nitrogen-isotope study of fluid-rock interactions in the Skiddaw aureole and granite, England, Am. Mineral., 54, 14951505.
  • Bebout, G. E., P. Agard, R. King, and E. Nakamura (2003), Geochemistry of devolatilization (and exhumation) in W. Alps HP and UHP metasedimentary suites, Geochim. Cosmochim. Acta, 67, suppl. 1, A36.
  • Blake, M. C., A. S. Jayko, R. J. McLaughlin, and M. B. Underwood (1987), Metamorphic and tectonic evolution of the Franciscan Complex, Northern California, in Metamorphism and Crustal Evolution of the Western United States, Rubey Vol. 7, edited by W. G. Ernst, pp. 10351060, Prentice-Hall, Englewood Cliffs, N. J.
  • Boyd, S. R. (2001), Nitrogen in future biosphere studies, Chem. Geol., 176, 130.
  • Busigny, V., P. Cartigny, P. Philippot, M. Ader, and M. Javoy (2003), Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: Evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe), Earth Planet. Sci. Lett., 215, 2742.
  • Domanik, K. J., and J. R. Holloway (2000), Experimental synthesis and phase relations of phengitic muscovite from 6.5 to 11 GPa in a calcareous metapelite from the Dabie Mountains, China, Lithos, 52, 5177.
  • Ernst, W. G. (1993), Metamorphism of Franciscan tectonostratigraphic assemblage, Pacheco Pass area, east-central Diablo Range, California Coast Ranges, Geol. Soc. Am. Bull., 105, 618636.
  • Ettwein, V. J., C. E. Stickley, M. A. Maslin, E. R. Laurie, A. Rosell-Melé, L. Vidal, and M. Brownless (2001), Fluctuations in productivity and upwelling intensity at Site 1083 during the intensification of the Northern Hemisphere glaciation (2.40–2.65 Ma) [online], Proc. Ocean Drill. Program Sci. Results, 175, 24 pp. (Available at http://www-odp.tamu.edu/publications/175_SR/VOLUME/CHAPTERS/SR175_18.PDF).
  • Farrell, J. W., T. F. Pedersen, S. E. Calvert, and B. Nielsen (1995), Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean, Nature, 377, 514517.
  • Fischer, T. P., D. R. Hilton, M. M. Zimmer, A. M. Shaw, Z. D. Sharp, and J. A. Walker (2002), Subduction and recycling of nitrogen along the Central American Margin, Science, 297, 11541157.
  • Freudenthal, T., T. Wagner, F. Wenzhofer, M. Zabel, and G. Wefer (2001), Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes, Geochim. Cosmochim. Acta, 65, 17951808.
  • Grove, M., and G. E. Bebout (1995), Cretaceous tectonic evolution of coastal southern California: Insights from the Catalina Schist, Tectonics, 14, 12901308.
  • Haendel, D., K. Muhle, H.-M. Nitzsche, G. Stiehl, and U. Wand (1986), Isotopic variations of the fixed nitrogen in metamorphic rocks, Geochim. Cosmochim. Acta, 50, 749758.
  • Hall, A. (1989), Ammonium in spilitized basalts of southwest England and its implications of the recycling of nitrogen, Geochem. J., 23, 1923.
  • Hall, A. (1990), Geochemistry of spilites for South-West England: A statistical approach, Mineral. Petrol., 41, 185197.
  • Hanschmann, G. (1981), Berechnung von Isotopieeffekten auf quantenchemischer Grundlage am beispiel sticksoffhaltiger Molekule, Zifl.-Mitt., 41, 1939.
  • Hilton, D. R., T. P. Fischer, and B. Marty (2002), Noble gases and volatile recycling at subduction zones, in Noble Gases in Geochemistry and Cosmochemistry, edited by D. Porcelli et al., Rev. Mineral. Geochem., 47, 319370.
  • Javoy, M. (1998), The birth of the Earth's atmosphere: The behaviour and fate of its major elements, Chem. Geol., 147, 1125.
  • Javoy, M., F. Pineau, and H. Delorme (1986), Carbon and nitrogen isotopes in the mantle, Chem. Geol., 57, 4162.
  • Lancelot, Y., R. Larson, and A. T. Fisher (1990), Proceedings of the Ocean Drilling Project, Initial Reports, vol. 129, Ocean Drill. Program, College Station, Tex.
  • Lehmann, M. F., S. M. Bernasconi, A. Barbieri, and J. A. McKenzie (2002), Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis, Geochim. Cosmochim. Acta, 66, 35733584.
  • Li, L., S. J. Sadofsky, and G. E. Bebout (2003), Carbon and nitrogen input fluxes in subducting sediments at the Izu-Bonin and Central America convergent margins, Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract T32A-0908.
  • Libes, S. M., and W. G. Deuser (1988), The isotope geochemistry of particulate nitrogen in the Peru Upwelling Area and the Gulf of Maine, Deep Sea Res., Part A, 35, 517533.
  • Lozar, F., and M. Mussa (2003), Silicoflagellate biostratigraphy (2003), Hole 1149A (ODP Leg 185, Nadezhda Basin, northwestern Pacific) [online], Proc. Ocean Drill. Program Sci. Results, 185, 18 pp. (Available at http://www-odp.tamu.edu/publications/185_SR/VOLUME/CHAPTERS/009. PDF).
  • Luther, G. W.III, B. Sundby, B. L. Lewis, P. J. Brendel, and N. Silverberg (1997), Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen, Geochim. Cosmochim. Acta, 61, 40434052.
  • Macko, S. A. (1989), Stable isotope organic geochemistry of sediments from the Labrador Sea (sites 646 and 647) and Baffin Bay (site 645), ODP Leg 105, Proc. Ocean Drill. Program Sci. Results, 105, 209221.
  • Madureira, L. A. S., S. A. van Kreveld, G. Eglinton, M. H. Conte, G. Ganssen, J. E. van Hinte, and J. Ottens (1997), Late Quaternary high-resolution biomarker and other sedimentary climate proxies in a northeast Atlantic core, Paleoceanography, 12, 255269.
  • Marty, B., and F. Humbert (1997), Nitrogen and argon isotopes in oceanic basalts, Earth Planet. Sci. Lett., 152, 101112.
  • Meyers, P. A. (1994), Preservation of elemental and isotopic source identification of sedimentary organic matter, Chem. Geol., 144, 289302.
  • Meyers, P. A., and H. Doose (1999), Sources, preservation, and thermal maturity of organic matter in Pliocene-Pleistocene organic-carbon-rich sediments of the Western Mediterranean Sea, Proc. Ocean Drill. Program Sci. Results, 161, 383390.
  • Milder, J. C., J. P. Montoya, and M. A. Altabet (1999), Carbon and nitrogen stable isotope ratios at Sites 969 and 974: Interpreting spatial gradients in sapropel properties, Proc. Ocean Drill. Program Sci. Results, 161, 401411.
  • Mingram, B., and K. Brauer (2001), Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt, Geochim. Cosmochim. Acta, 65, 273285.
  • Minoura, K., K. Hoshino, T. Nakamura, and E. Wada (1997), Late Pleistocene-Holocene paleoproductivity circulation in the Japan Sea: Sea-level control on δ13C and δ15N records of sediment organic material, Paleogeogr. Paleoclimatol. Paleoecol., 135, 4150.
  • Mora, G. (2002), Variations in the accumulation of marine organic matter and carbonates at Leg 186 sites [online], Proc. Ocean Drill. Program Sci. Results, 186. (Available at http://www-odp.tamu.edu/publications/186_SR/103/103_htm).
  • Muller, A., and M. Voss (1999), The paleoenvironments of coastal lagoons in the southern Baltic Sea, II. δ13C and δ15N ratios or organic matter—Sources and sediments, Palaeogeogr. Palaeoclimatol. Palaeoecol., 145, 1732.
  • Muller, P. J. (1977), C/N ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed to clays, Geochim. Cosmochim. Acta, 41, 765776.
  • Muzuka, A. N. N., S. A. Macko, and T. F. Pedersen (1991), Stable carbon and nitrogen isotope compositions of organic matter from sites 724 and 725, Oman Margin, Proc. Ocean Drill. Program Sci. Results, 117, 571586.
  • Peacock, S. M. (2003), Thermal structure and metamorphic evolution of subducting slabs, in Inside the Subduction Factory, Geophys. Monogr. Ser., vol. 138, edited by J. Eiler, pp. 722, AGU, Washington, D. C.
  • Peters, K. E., R. E. Sweeney, and I. R. Kaplan (1978), Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter, Limnol. Oceanogr., 23, 598604.
  • Plank, T., and C. H. Langmuir (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325394.
  • Plank, T.et al. (2000), Proceedings of the Ocean Drilling Program, Initial Reports [CD-ROM], vol. 185, Ocean Drill. Program, College Station, Tex.
  • Pride, C., R. Thunell, D. Sigman, L. Keigwin, M. Altabet, and E. Tappa (1999), Nitrogen isotopic variations in the Gulf of California since the last deglaciation: Response to global climate change, Paleoceanography, 14, 397409.
  • Rau, G. H., M. A. Arthur, and W. E. Dean (1987), 15N/14N variations in Cretaceous Atlantic sedimentary sequences: Implications for past changes in marine nitrogen biogeochemistry, Earth Planet. Sci. Lett., 82, 269279.
  • Reinecke, T. (1998), Prograde high- to ultrahigh-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana, Zermatt-Saas Zone, western Alps, Lithos, 42, 147189.
  • Sadofsky, S. J., and G. E. Bebout (2000), Ammonium partitioning and nitrogen-isotope fractionation among coexisting micas during high-temperature fluid-rock interactions: Examples from the New England Appalachians, Geochim. Cosmochim. Acta, 64, 28352849.
  • Sadofsky, S. J., and G. E. Bebout (2003), Record of forearc devolatilization in low-T, high-P/T metasedimentary suites: Significance for models of convergent margin chemical cycling, Geochem. Geophys. Geosyst., 4(4), 9003, doi:10.1029/2002GC000412.
  • Sedlock, R. L. (1988), Metamorphic petrology of a high pressure, low temperature subduction complex in West-Central Baja California, Mexico, J. Metamorph. Geol, 6, 205233.
  • Shipboard Scientific Party (2000), Site 1119: Drift accretion on Canterbury Slope [online], Proc. Ocean Drill. Program Initial Rep., 181, 112 pp. (Available at http://www-odp.tamu.edu/publications/181_IR/VOLUME/CHAPTERS/CHAP_03. PDF).
  • Snyder, G., R. Poreda, U. Fehn, and A. Hunt (2003), Sources of nitrogen and methane in Central American geothermal settings: Noble gas and 129I evidence for crustal and magmatic volatile components, Geochem. Geophys. Geosyst., 4(1), 9001, doi:10.1029/2002GC000363.
  • Sweeney, R. E., K. K. Liu, and I. R. Kaplan (1978), Oceanic nitrogen isotopes and their uses in determining the source of sedimentary nitrogen, in Stable Isotopes in the Earth Sciences, pp. 926, Sci. Inf. Div., Dept. of Sci. and Ind. Res., Victoria Univ. of Wellington, Wellington, New Zealand.
  • Thamdrup, B., and T. Dalsgaard (2000), The fate of ammonium in anoxic manganese oxide-rich marine sediment, Geochim. Cosmochim. Acta, 64, 41574164.
  • Urbat, M., and T. Pletsch (2003), Pleistocene deep-sea sediment in ODP Hole 1149A, Nadezhda Basin: Sources, alteration, and age controls (0–800 ka) [online], Proc. Ocean Drill. Program Sci. Results, 185, 21 pp. (Available at http://www-odp.tamu.edu/publications/185_SR/VOLUME/CHAPTERS/012. PDF).
  • Van Soest, M. C., D. R. Hilton, and R. Kreulen (1998), Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids, Geochim. Cosmochim. Acta, 62, 33233335.
  • von Huene, R., and D. W. Scholl (1991), Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust, Rev. Geophys., 29, 279316.
  • Waples, D. W. (1985), Organic and inorganic nitrogen in sediments from Leg 80, Deep Sea Drilling Project, Initial Rep. Deep Sea Drill. Proj., 80, 993996.
  • Waples, D. W., and J. R. Sloan (1980), Carbon and nitrogen diagenesis in deep sea sediments, Geochim. Cosmochim. Acta, 44, 14631470.
  • Williams, L. B., R. E. Ferrell Jr., I. Hutcheon, A. J. Bakel, M. M. Walsh, and H. R. Krouse (1995), Nitrogen isotope geochemistry of organic matter and minerals during diagenesis and hydrocarbon migration, Geochim. Cosmochim. Acta, 59, 765779.
  • Wilson, T. R. S., and J. Thomson (1998), Calcite dissolution accompanying early diagenesis in turbiditic deep ocean sediments, Geochim. Cosmochim. Acta, 62, 20872096.
  • Zhang, Y., and A. Zindler (1993), Distribution and evolution of carbon and nitrogen in Earth, Earth Planet. Sci. Lett., 117, 331345.