SEARCH

SEARCH BY CITATION

References

  • Andreae, M., and P. Crutzen, Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 267, 10521058, 1997.
  • Charlson, R., J. Seinfeld, A. Nenes, M. Kulmala, A. Laaksonen, and M. Facchini, Reshaping the theory of cloud formation, Science, 292, 20252026, 2001.
  • Cheshchevoi, V., V. Diner, and V. Polushkin, Cyclization and oxidation of isoprene oligomers during polymerization on kaolinite, Polymer Science USSR, A29, 784789, 1987.
  • Duncan, J., L. Schindler, and J. Roberts, A new sulfate mediated reaction: Conversion of acetone to trimethylbenzene in the presence of liquid sulfuric acid, Geophys. Res. Lett., 25, 631634, 1998.
  • Duncan, J., L. Schindler, and J. Roberts, Chemistry at and near the surface of liquid sulfuric acid: A kinetic, thermodynamic, and mechanistic analysis of heterogeneous reactions of acetone, J. Phys. Chem. B, 103, 72477259, 1999.
  • Facchini, C., et al., Partitioning of the organic aerosol component between fog droplets and interstitial air, J. Geophys. Res., 104, 26,82126,832, 1999a.
  • Facchini, C., M. Mircea, S. Fuzzi, and R. Charlson, Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257259, 1999b.
  • Ferek, R., A. Lazrus, P. Haagenson, and J. Winchester, Strong and weak acidity of aerosols collected over the North-eastern United States, Environ. Sci. Technol., 17, 315324, 1983.
  • Griffin, R., D. Cocker III, R. Flagan, and J. Seinfeld, Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res., 104, 35553567, 1999.
  • Hallquist, M., I. Wängberg, E. Ljungström, I. Barnes, and K. Becker, Aerosol and product yields from NO3 radical initiated oxidation of selected monoterpenes, Environ. Sci. Technol., 33, 553559, 1999.
  • Havers, N., P. Burba, J. Lambert, and D. Klockow, Spectroscopic characterisation of humic-like substances in airborne particulate matter, J. Atmos. Chem., 29, 4554, 1998.
  • Hoffmann, T., R. Bandur, U. Marggraf, and M. Linscheid, Molecular composition of organic aerosols formed in the a-pinene/O3 reaction: Implications for new particle formation processes, J. Geophys. Res., 103, 25,56925,578, 1998.
  • Jang, M., and R. Kamens, Atmospheric secondary aerosol formation by heterogeneous reaction of aldehydes in the presence of a sulfuric acid aerosol catalyst, Environ. Sci. Technol., 35, 47584766, 2001.
  • Jang, M., N. Czoschke, S. Lee, and R. Kamens, Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814817, 2002.
  • Kavouras, I., N. Mihalopoulos, and E. Stephanou, Formation of atmospheric particles from organic acids produced by forests, Nature, 395, 683686, 1998.
  • Krivacsy, Z., et al., Study on the chemical character of water soluble compounds in fine atmospheric aerosol at the Jungfraujoch, J. Atmos. Chem., 39, 235259, 2001.
  • Kulmala, M., L. Pirjola, and J. Mäkelä, Stable sulfate clusters as a source of new atmospheric particles, Nature, 404, 6669, 2000.
  • Kulmala, M., and K. Hämeri, Biogenic Aerosol Formation in the Boreal Forest, Report Series, in Aerosol Science, 47, Finnish Association for Aerosol Research, Helsinki, 2000.
  • Mukai, H., and Y. Ambe, Characterization of a humic acid-like brown substance in airborne particulate matter and tentative identification of its origin, Atmos. Environ., 20, 813819, 1986.
  • Noziere, B., and D. Riemer, The chemical processing of gas-phase carbonyl compounds by sulfuric acid aerosols: 2,4-pentanedione, Atmos. Environ., 37, 841851, 2003.
  • Pandis, S. N., S. E. Paulson, J. Seinfeld, and C. Flagan, Aerosol formation in the photo-oxidation of isoprene and β-pinene, Atmos. Environ., 25A, 9971008, 1991.
  • Puxbaum, H., J. Rendl, R. Allabashi, L. Otter, and M. Scholes, Mass balance of the atmospheric aerosol in a South African subtropical savanna (Nylsvley May 1997), J. Geophys. Res., 105, 20,69720,706, 2000.
  • Rogge, W., M. Mazurek, L. Hildemann, G. Cass, and B. R. T. Simoneit, Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation, Atmos. Environ., 27A, 13091330, 1993.
  • Saxena, P., and L. Hildemann, Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57109, 1996.
  • Seinfeld, J., and S. Pandis (Eds.), Atmospheric Chemistry and Physics, John Wiley and Sons Inc., New York, 1998.
  • Seinfeld, J., B. Erdakos, W. Asher, and J. Pankow, Modeling the formation secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the α-Pinene-, β-Pinene-, Sabinene-, Δ3-Carene-, and Cyclohexene-ozon systems, Environ. Sci. Technol., 35, 18061817, 2001.
  • Simpson, D., et al., Inventorying emissions from nature in Europe, J. Geophys. Res., 104, 81138152, 1999.
  • Staebler, R., D. Toom-Sauntry, L. Barrie, U. Langendörfer, E. Lehrer, S. Li, and H. Dryfhout-Clark, Physical and chemical characteristics of aerosols at Spits Bergen in the spring of 1996, J. Geophys. Res., 104, 55155529, 1999.
  • Warneck, P., (Ed.), Chemistry of the natural Atmosphere, Academic Press Inc., San Diego, 1988.
  • Zappoli, S., et al., Inorganic, organic and macromolecular compounds of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ., 33, 27332743, 1999.