Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results

Authors


Abstract

[1] Accurate stratigraphic ages are crucial to understanding the deformation history of the Tibetan Plateau prior to and during the Indo-Asian collision. Efforts to quantify Mesozoic-Cenozoic ages are hindered by limited fossils and a paucity of volcanic horizons and regionally correlative strata. Magnetostratigraphic and biostratigraphic results from the Xining-Minhe-Longzhong basin complex and Dangchang basin provide an improved chronology of nonmarine basin development over a large region of the northeastern Tibetan Plateau (34–37°N, 101–105°E). Analyses of 171 magnetostratigraphic levels and 24 palynological assemblages (>120 species) indicate Late Jurassic-Early Cretaceous to mid-Tertiary deposition. Although magnetic polarity zonation is incomplete, independent palynological age control partially restricts possible correlations to the Geomagnetic Polarity Timescale. The sediment accumulation record, basin provenance, structural geology, and published thermochronological data support a history of Jurassic exhumation, Late Jurassic-Early Cretaceous fault-related basin initiation, and Cretaceous-Paleogene reduced accumulation. These patterns, which are compatible with Late Jurassic-Early Cretaceous extension and Cretaceous-Paleogene postrift thermal subsidence, were disrupted at about 40–30 Ma, when shortening related to the Indo-Asian collision induced localized range uplift, vertical axis rotation, and amplified subsidence.

Ancillary