SEARCH

SEARCH BY CITATION

References

  • Aldakheel, Y. Y., and F. M. Danson (1997), Spectral reflectance of dehydrating leaves: Measurements and modelling, Int. J. Remote Sens., 18, 36833690.
  • Barbosa, P. M., D. Stroppiana, J. M. Gregoire, and J. M. C. Pereira (1999), An assessment of vegetation fire in Africa (1981–1991), Burned areas, burned biomass, and atmospheric emissions, Global Biogeochem. Cycles, 13(4), 933950.
  • Bowman, W. D. (1989), The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves, Remote Sens. Environ., 30, 249255.
  • Brown, J. K., G. D. Booth, and D. G. Simmerman (1989), Seasonal change in live fuel moisture of understory plants in western Aspen, U.S., in 10th Conference on Fire and Forest Meteorology, pp. 406412, Am. Meteorol. Soc., Boston, Mass.
  • Burgan, R. E. and R. A. Hartford (1993), Monitoring vegetation greenness with satellite data, USDA Forest Serv., Ogden, Utah.
  • Burgan, R. E., R. W. Klaver, and J. M. Klaver (1998), Fuel models and fire potential from satellite and surface observations, Int. J. Wildland Fire, 8(3), 159170.
  • Carter, G. A. (1991), Primary and secondary effects of water content on the spectral reflectance of leaves, Am. J. Botany, 78, 916924.
  • Ceccato, P., S. Flasse, S. Tarantola, S. Jacquemoud, and J. M. Grégoire (2001), Detecting vegetation leaf water content using reflectance in the optical domain, Remote Sens. Environ., 77, 2233.
  • Ceccato, P., N. Gobron, S. Flasse, B. Pinty, and S. Tarantola (2002), Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1. Theoretical approach, Remote Sens. Environ., 82, 188197.
  • Chladil, M. A., and M. Nunez (1995), Assessing grassland moisture and biomass in Tasmania: The application of remote sensing and empirical models for a cloudy environment, Int. J. Wildland Fire, 5, 165171.
  • Chuvieco, E., M. Deshayes, N. Stach, D. Cocero, and D. Riaño (1999), Short-term fire risk: Foliage moisture content estimation from satellite data, in Remote Sensing of Large Wildfires in the European Mediterranean Basin, edited by E. Chuvieco, pp. 1738, Springer-Verlag, New York.
  • Chuvieco, E., D. Riaño, I. Aguado, and D. Cocero (2002), Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment, Int. J. Remote Sens., 23(11), 21452162.
  • Cihlar, J., D. Manak, and N. Voisin (1994), AVHRR bidirectional reflectance effects and compositing, Remote Sens. Environ., 48, 7788.
  • Coll, C., and V. Caselles (1997), A global split-window algorithm for land surface temperature from AVHRR data: Validation and algorithm comparison, J. Geophys. Res., 102(B14), 16,69716,713.
  • Fearnside, P. M., P. M. Lima de Alencastro, and F. J. Alves Rodriguez (2001), Burning of Amazonian rainforest: Burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil, Forest Ecol. Manage., 146, 115128.
  • Fourty, T., and F. Baret (1997), Vegetation water and dry matter contents estimated from top-of-the atmosphere reflectance data: A simulation study, Remote Sens. Environ., 61, 3445.
  • Hartford, R. and R. Burgan (1994), Vegetation condition and fire occurrence: A remote sensing connection, in Interior West Fire Council Meeting and Symposium, pp. 114, Interior West Fire Counc., Coeur d' Alene, Idaho.
  • Hoffa, E. A., D. E. Ward, W. M. Hao, R. A. Susott, and R. H. Wakimoto (1999), Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res., 104(D11), 13,84113,853.
  • Holben, B. N. (1986), Characteristics of maximum-value composite images from temporal AVHRR data, Int. J. Remote Sens., 7, 14171434.
  • Hunt, E. R., and B. N. Rock (1989), Detection of changes in leaf water content using near and middle-infrared reflectances, Remote Sens. Environ., 30, 4354.
  • Jackson, R. D., P. J. Pinter, R. J. Reginato, and S. B. Idso (1986), Detection and evaluation of plant stress for crop management decisions, IEEE Trans. Geosci. Remote Sens., 24, 99106.
  • Kasischke, E. S., N. L. Christensen, and B. J. Stocks (1995), Fire, global warming, and the carbon balance of boreal forests, Ecol. Appl., 5(2), 437451.
  • Kasischke, E. S., B. J. Stocks, K. O'Neill, N. H. F. French, and L. L. Bourgeau-Chavez (2000), Direct Effect of fire on the boreal forest carbon budget, in Biomass Burning and Its Inter-Relationships With the Climate System, edited by J. L. Innes, M. Beniston, and M. M. Verstraete, pp. 6171, Kluwer Acad., Norwell, Mass.
  • Kogan, F. N. (1990), Remote sensing of weather impacts on vegetation in non-homogeneous areas, Int. J. Remote Sens., 11(8), 14051419.
  • Kramer, P. J. (1983), Water Relations of Plants, 489 pp., Academic, San Diego, Calif.
  • Levine, J. S. (2000), Global biomass burning: A case study of the gaseous and particulate emissions released to the atmosphere during the 1997 fires in Kalimantan and Sumatra, Indonesia, in Biomass Burning and Its Inter-Relationships With the Climate System, edited by J. L. Innes, M. Beniston, and M. M. Verstraete, pp. 1531, Kluwer Acad., Norwell, Mass.
  • Mack, F., J. Hoffstadt, G. Esser, and J. G. Goldammer (1996), Modeling the influence of vegetation fires on the global carbon cycle, in Biomass Burning and Global Change, edited by J. S. Levine, pp. 149159, MIT Press, Cambridge, Mass.
  • Paltridge, G. W., and J. Barber (1988), Monitoring grassland dryness and fire potential in Australia with NOAA/AVHRR data, Remote Sens. Environ., 25, 381394.
  • Rouse, J. W., R. W. Haas, J. A. Schell, D. H. Deering, and J. C. Harlan (1974), Monitoring the vernal advancement and retrogradation (Greenwave effect) of natural vegetation, NASA/GSFC, Greenbelt, Md.
  • Scholes, R. J., D. E. Ward, and C. O. Justice (1996), Emissions of trace gases and aerosol particles due to vegetation burning in Southern Hemisphere Africa, J. Geophys. Res., 101(D19), 23,67723,682.
  • Valor, E., and V. Caselles (1996), Mapping land surface emissivity from NDVI: Application to European, African, and South American areas, Remote Sens. Environ., 57, 167184.
  • Van Wagner, C. E. (1985), Drought, timelag and fire danger rating, in 8th National Conference on Fire and Forest Meteorology, pp. 178185, Soc. of Am. Foresters, Detroit, Mich.
  • Vidal, A., C. Devaux-Ros, and S. M. Moran (1996), Atmospheric correction of Landsat TM thermal band using surface energy balance, Remote Sens. Rev., 15, 2333.
  • Viegas, D. X., T. P. Viegas, and A. D. Ferreira (1990), Characteristics of some forest fuels and their relation to the occurrence of fires, in International Conference of Forest Fire Research, pp. 113, Assoc. for the Devel. of Indust. Aerodyn., Coimbra, Portugal.
  • Viegas, D. X., T. P. Viegas, and A. D. Ferreira (1992), Moisture content of fine forest fuels and fire occurrence in central Portugal, Int. J. Wildland Fire, 2(2), 6985.
  • Ward, D. E., R. A. Susott, J. B. Kauffman, R. E. Babbitt, D. L. Cummings, B. Dias, B. N. Holben, Y. J. Kaufman, R. A. Rasmussen, and A. W. Setzer (1992), Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B experiment, J. Geophys. Res., 97(D13), 14,60114,619.
  • Ward, D. E., W. M. Hao, R. A. Susott, R. E. Babbitt, R. W. Shea, J. B. Kauffman, and C. O. Justice (1996), Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems, J. Geophys. Res., 101(D19), 23,56923,576.
  • Zarco-Tejada, P. J., C. A. Rueda, and S. L. Ustin (2003), Water content estimation in vegetation with MODIS reflectance data and model inversion methods, Remote Sens. Environ., 85, 109124.