SEARCH

SEARCH BY CITATION

References

  • Aires, F., and W. B. Rossow, Inferring instantaneous, multivariate and nonlinear sensitivities for the analysis of feedback processes in a dynamical system: The Lorenz model case study, Q. J. R. Meteorol. Soc., 129, 239275, 2003.
  • Armstrong, R. L., and M. J. Brodzik, An Earth-gridded SSM/I data set for cryospheric studies and global change monitoring, Adv. Space Res., 16(10), 155163, 1995.
  • Chédin, A., N. A. Scott, C. Wahiche, and P. Mouliner, The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series, J. Clim. Appl. Meteorol., 24, 128143, 1985.
  • Chen, Y., J. A. Francis, and J. R. Miller, Surface temperature of the Arctic: Comparison of TOVS satellite retrievals with surface observations, J. Clim., 15, 36983708, 2002.
  • Chiacchio, M., J. A. Francis, and P. Stackhouse Jr., Evaluation of methods to estimate the surface downwelling longwave flux during Arctic winter, J. Appl. Meteorol., 41, 307318, 2002.
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, Overview of Arctic cloud and radiation characteristics, J. Clim., 9, 17311764, 1996.
  • Francis, J. A., Improvements to TOVS retrievals over sea ice and applications to estimating Arctic energy fluxes, J. Geophys. Res., 99, 10,39510,408, 1994.
  • Francis, J. A., A method to derive downwelling longwave fluxes at the Arctic surface from TIROS operational vertical sounder data, J. Geophys. Res., 102, 17951806, 1997.
  • Francis, J. A., and A. J. Schweiger, A new window opens on the Arctic, Eos Trans AGU, 81(8), 7778, 2000.
  • Gates, W. L., et al., An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I), Bull. Am. Meteorol. Soc., 80, 2955, 1999.
  • Guest, P., and K. L. Davidson, Factors affecting variations of snow surface temperature and air temperature over sea ice in winter, in The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr. Ser., vol. 85, edited by O. M. Johannessen, R. D. Muench, and J. E. Overland, pp. 435442, AGU, Washington, D. C., 1994.
  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis, Efficient three-dimensional global models for climate studies: Models I and II, Mon. Weather Rev., 111, 609662, 1983.
  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J. Lerner, Climate sensitivity: Analysis of feedback mechanisms, in Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., vol. 29, edited by J. E. Hansen, and T. Takahashi, pp. 130163, AGU, Washington, D. C., 1984.
  • Holland, M. M., and C. M. Bitz, Polar amplification of climate change in coupled models, Clim. Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6, 2003.
  • Huschke, R., Arctic cloud statistics from “air-calibrated” surface weather observations, Rep. RM-6173-PR, 79 pp., Rand Corp., Santa Monica, Calif., 1969.
  • Ingram, W. J., C. A. Wilson, and J. F. B. Mitchell, Modelling climate change: An assessment of sea ice and surface albedo feedbacks, J. Geophys. Res., 94, 86098622, 1989.
  • Intergovernmental Panel on Climate Change, Model evaluation, in Climate Change 2001: The Scientific Basis-Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 471524, Cambridge Univ. Press, New York, 2001.
  • Kalnay, E., et al., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437471, 1996.
  • Key, J., and A. J. Schweiger, Tools for atmospheric radiative transfer: Streamer and FluxNet, Comput. Geosci., 24, 443451, 1998.
  • Large, W. G., J. C. McWilliams, and S. C. Doney, Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363403, 1994.
  • Maslanik, J., C. Fowler, T. Scambos, J. Key, and W. Emery, AVHRR-based polar pathfinder products for modeling applications, Ann. Glaciol., 25, 388392, 1997.
  • McGinnis, D. L., and R. Crane, A multivariate analysis of Arctic climate in GCMs, J. Clim., 7, 12401250, 1994.
  • Miller, J. R., and G. L. Russell, Investigating the interactions among river flow, salinity and sea ice using a global coupled atmosphere-ocean-ice model, Ann. Glaciol., 25, 121126, 1997.
  • Miller, J. R., and G. L. Russell, Projected impact of climate change on the freshwater and salt budgets of the Arctic Ocean by a global climate model, Geophys. Res. Lett., 27, 11831186, 2000.
  • Miller, J. R., and G. L. Russell, Projected impact of climate change on the energy budget of the Arctic Ocean by a global climate model, J. Clim., 15, 914928, 2002.
  • Rind, D., R. Healy, C. P. Parkinson, and D. Martinson, The role of sea ice in 2 × CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent, J. Clim., 8, 449463, 1995.
  • Russell, G. L., J. R. Miller, and D. Rind, A coupled atmosphere-ocean model for transient climate change studies, Atmos. Ocean, 33, 683730, 1995.
  • Schweiger, A. J., R. W. Lindsay, J. R. Key, and J. A. Francis, Arctic clouds in multiyear satellite data sets, Geophys. Res. Lett., 26, 18451848, 1999.
  • Schweiger, A. J., R. W. Lindsay, J. A. Francis, J. Key, J. M. Intrieri, and M. D. Shupe, Validation of TOVS Path-P data during SHEBA, J. Geophys. Res., 107(C10), 8041, doi:10.1029/2000JC000453, 2002.
  • Scott, N. A., A. Chédin, R. Armante, J. A. Francis, C. Stubenrauch, J. P. Chaboureau, F. Chevallier, C. Claud, and F. Cheruy, Characteristics of the TOVS Pathfinder Path-B dataset, Bull. Am. Meteorol. Soc., 80, 26792701, 1999.
  • Serreze, M. C., Observational evidence of recent change in the northern high-latitude environment, Clim. Change, 46, 159207, 2000.
  • Uttal, T., et al., The surface heat budget of the Arctic Ocean, Bull. Am. Meteorol. Soc., 83, 255276, 2002.