SEARCH

SEARCH BY CITATION

References

  • Booth, C. R., T. B. Lucas, J. H. Morrow, C. S. Weiler, and P. A. Penhale (1994), The United States National Science Foundation's polar network for monitoring ultraviolet radiation, in Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, Antarc. Res. Ser., vol. 62, edited by C. S. Weiler, and P. A. Penhale, pp. 1737, AGU, Washington, D. C.
  • Briegleb, B. P. (1992), Delta-Eddington approximation for approximation for solar radiation in the NCAR community climate model, J. Geophys. Res., 97, 76037612.
  • Gardiner, B. G. (1987), Solar radiation transmitted to the ground through cloud in relation to surface albedo, J. Geophys. Res., 92, 40104018.
  • Grenfell, T. C., and S. G. Warren (1999), Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorbing of radiation, J. Geophys. Res., 104, 31,69731,709.
  • Hobbs, P. V., and A. L. Rangno (1998), Microstructure of low and middle-level clouds over the Beaufort Sea, Q. J. R. Meteorol. Soc., 124, 20352071.
  • Joseph, J. H., W. J. Wiscombe, and J. A. Weinman (1976), The delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci., 33, 24532459.
  • Key, J. R., and J. M. Intrieri (2000), Cloud particle phase determination with the AVHRR, J. Appl. Meteorol., 39, 17971804.
  • Leontyeva, E., and K. Stamnes (1994), Estimations of cloud optical thickness from ground-based measurements of incoming solar radiation in the Arctic, J. Clim., 7, 566578.
  • Lubin, D. (1994), Infrared radiative properties of the maritime Antarctic atmosphere, J. Clim., 7, 121140.
  • Lubin, D., and J. E. Frederick (1991), The ultraviolet radiation environment of the Antarctic Peninsula: The roles of ozone and cloud cover, J. Appl. Meteorol., 30, 478493.
  • Lubin, D., C. R. Booth, T. Lucas, D. Neuschuler, and J. E. Frederick (1989), Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica, Geophys. Res. Lett., 16, 783785.
  • Lubin, D., D. Cutchin, W. Conant, H. Grassl, U. Schmid, and W. Biselli (1995), Spectral longwave emission in the tropics: FTIR measurement at the sea surface and comparison with fast radiation codes, J. Clim., 8, 286295.
  • Lubin, D., P. Ricchiazzi, A. Payton, and C. Gautier (2002a), The significance of multidimensional radiative transfer effects measured in surface fluxes at an Antarctic coastline, J. Geophys. Res., 107(D19), 4387, doi:10.1029/2001JD002030.
  • Lubin, D., S. K. Satheesh, G. McFarquar, and A. J. Heymsfield (2002b), The longwave radiative forcing of Indian Ocean tropospheric aerosol, J. Geophys. Res., 107(D19), doi:10.1029/2001JD001183.
  • Mahesh, A., V. P. Walden, and S. G. Warren (2001), Ground-based infrared remote sensing of cloud properties over the Antarctic Plateau, part II: Cloud optical depths and particle sizes, J. Appl. Meteorol., 40, 12791294.
  • Paltridge, G. W. (1974), Infrared emissivity, short-wave albedo, and the microphysics of stratiform water clouds, J. Geophys. Res., 79, 40534058.
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartman (1989), Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment, Science, 243, 5763.
  • Revercomb, H. E., H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, and L. A. Sromovsky (1988), Radiometric calibration of IR Fourier transform spectrometers: Solution to a problem with the High-Resolution Interferometer Sounder, Appl. Opt., 27, 32103218.
  • Revercomb, H. E., F. A. Best, R. G. Dedecker, T. P. Dirkx, R. A. Herbsleb, R. O. Knuteson, J. F. Short, and W. L. Smith (1993), Atmospheric emitted radiance interferometer (AERI) for ARM, paper presented at Fourth Symposium on Global Climate Change Studies, Am. Meteorol. Soc., Anaheim, Calif.
  • Ricchiazzi, P., and C. Gautier (1998), Investigation of the effect of surface heterogeneity and topography on the radiation environment of Palmer Station, Antarctica, with a hybrid 3-D radiative transfer model, J. Geophys. Res., 103, 61616176.
  • Ricchiazzi, P., C. Gautier, and D. Lubin (1995), Cloud scattering optical depth and local surface albedo in the Antarctic: Simultaneous retrieval using ground-based radiometry, J. Geophys. Res., 100, 21,09121,104.
  • Saxena, V. K., and F. H. Ruggiero (1990), Antarctic coastal stratus clouds: Microstructure and acidity, in Contributions to Antarctic Research I, Antarc. Res. Ser., vol. 50, edited by D. H. Elliot, pp. 718, AGU, Washington, D. C.
  • Shupe, M. D., and J. M. Intrieri (2003), Arctic surface cloud forcing at SHEBA, part 1: The impact of cloud properties, surface albedo, and solar zenith angle, J. Clim., in press.
  • Smith, R. C., et al. (1999), Marine ecosystem sensitivity to climate change, Bioscience, 49, 393404.
  • Smolskaia, I., M. Nunez, and K. Michael (1999), Measurements of erythemal irradiance near Davis Station, Antarctica: Effect of inhomogeneous surface albedo, Geophys. Res. Lett., 26, 13811384.
  • Stamnes, K., S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 25022509.
  • Stamnes, K., J. Slusser, M. Bowen, C. R. Booth, and T. Lucas (1990), Biologically effective ultraviolet radiation, total ozone abundance, and cloud optical depth at McMurdo Station, Antarctica, September 15, 1988 through April 15, 1989, Geophys. Res. Lett., 17, 21812184.
  • Stamnes, K., R. G. Ellingson, J. A. Curry, J. E. Walsh, and B. D. Zak (1999), Review of science issues, deployment strategy, and status for the ARM North Slope of Alaska - Adjacent Arctic Ocean Climate Research Site, J. Clim., 12, 4663.
  • Stephens, G. L. (1978), Radiation profiles in extended water clouds. II: Parameterization schemes, J. Atmos. Sci., 35, 21232132.
  • Stone, R. S. (1993), Properties of austral winter clouds derived from radiometric profiles at the South Pole, J. Geophys. Res., 98, 12,96112,971.
  • Stone, R. S., G. L. Stephens, C. M. R. Platt, and S. Banks (1990), The remote sensing of thin cirrus clouds using satellites, lidar, and radiative transfer theory, J. Appl. Meteorol., 29, 353366.
  • Thompson, D. W. J., and S. Solomon (2002), Interpretation of recent Southern Hemisphere climate change, Science, 296, 895899.
  • Tobin, D. C., R. O. Knuteson, H. E. Revercomb, V. P. Walden, S. A. Clough, E. J. Mlawer, and R. G. Ellingson (1998), AERI-ER at the SHEBA ice station: Far infrared water vapor continuum measurements, in Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting, March 23–27, 1998, Tucson, Arizona, Rep. DOE/ER-0738, pp. 753756, U.S. Dep. of Energy, Germantown, Md.
  • Tsay, S.-C., K. Stamnes, and K. Jayaweera (1989), Radiative energy budget in the cloudy and hazy Arctic, J. Atmos. Sci., 46, 10021018.
  • Turner, D. (2003), Microphysical properties of single and mixed-phase Arctic clouds derived from ground-based AERI observations, Ph.D. dissertation, 167 pp., Dep. of Atmos. and Oceanic Sci., Univ. of Wis., Madison.
  • Turner, D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang (2003), Cloud phase determination using ground-based AERI observations at SHEBA, J. Appl. Meteorol., 42, 701715.
  • Uttal, T., et al. (2002), Surface heat budget of the Arctic Ocean, Bull. Am. Meteorol. Soc., 83, 255275.
  • Vaughan, D. G., G. J. Marshall, W. M. Connolley, J. C. King, and R. Mulvaney (2001), Devil in the detail, Science, 293, 17771779.
  • Walden, V. P., S. G. Warren, F. J. Murcray, and R. G. Ellingson (1997), Infrared radiance spectra for testing radiative transfer models in cold and dry atmospheres: Test case from the Antarctic Plateau, Bull. Am. Meteorol. Soc., 78, 22462247.
  • Wang, X., and J. R. Key (2003), Recent trends in Arctic surface, cloud, and radiation properties from space, Science, 299, 17251728.
  • Wiscombe, W. J., and J. W. Evans (1977), Exponential sum fitting of radiative transmission functions, J. Comput. Phys., 24, 416444.