SEARCH

SEARCH BY CITATION

References

  • Ackermann, J., P. Völger, and M. Wiegner (1999), Significance of multiple scattering from tropospheric aerosols for ground-based backscatter, Appl. Opt., 38(24), 51955201.
  • Adam, M., J. M. Ondov, and M. B. Parlange (2004), Determination of aerosol extinction coefficient profiles from elastic backscatter lidar at 1064 nm using the near-end solution: Uncertainties arising from estimation of the boundary conditions, in Proceedings of XXIIth International Laser Radar Conference, ESA Spec. Publ. SP-561, Eur. Space Ag., Paris, in press.
  • Althausen, D., D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner (2000), Scanning 6-wavelength 11-channel aerosol lidar, J. Atmos. Oceanic Technol., 17, 14691482.
  • Barnaba, F., and G. P. Gobbi (2001), Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases, J. Geophys. Res., 106(D3), 30053018.
  • Bohren, C. F., and D. R. Huffman (1983), Absorption and Scattering of Light by Small Particles, John Wiley, Hoboken, N. J.
  • Carrico, C. M., M. H. Bergin, J. Xu, K. Baumann, and H. Maring (2003), Urban aerosol radiative properties: Measurements during the 1999 Atlanta Supersite Experiment, J. Geophys. Res., 108(D7), 8422, doi:10.1029/2001JD001222.
  • Charlson, R. J. (1969), Atmospheric visibility related to aerosol mass concentration, Environ. Sci. Technol., 3(10), 913918.
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann (1992), Aerosols and global warming response, Science, 256(5057), 598599.
  • Collis, R. T. H. (1966), Lidar: A new atmospheric probe, Q. J. R. Meteorol. Soc., 92, 220230.
  • Collis, R. T. H., and P. B. Russell (1976), Lidar measurement of particles and gases by elastic backscattering and differential absorption, in Laser Monitoring of the Atmosphere, edited by E. D. Hinkley, pp. 71152, Springler-Verlag, New York.
  • Dalzell, W. H., and A. F. Sarofim (1969), Optical constants of soot and their application to heat-flux calculations, Heat Transfer, J., 91, 100104.
  • Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59(3), 590608.
  • Edlen, K. (1966), The refractive index of air, Metrologia, 2(2), 7180.
  • Elterman, L. (1970), Vertical attenuation model with eight surface meteorological ranges 2 to 13 kilometers, Rep. AFCRL-70-0200, U.S. Air Force, Washington, D. C.
  • Fernald, F. G. (1984), Analysis of atmospheric lidar observations: Some comments, Appl. Opt., 23(5), 652653.
  • Ferrare, R. A., S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer (1998a), Raman lidar measurements of aerosol extinction and backscattering: 1. Methods and comparisons, J. Geophys. Res., 103(D16), 19,66319,672.
  • Ferrare, R. A., S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, and Y. J. Kaufman (1998b), Raman lidar measurements of aerosol extinction and backscattering: 2. Derivations of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements, J. Geophys. Res., 103(D16), 19,67319,689.
  • Flamant, C., et al. (2000), Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2, Tellus, Ser. B, 52, 662677.
  • Gobbi, G. P., F. Barnaba, M. Blumthaler, G. Labow, and J. R. Herman (2002), Observed effects of particles nonsphericity on the retrieval of marine and desert dust aerosol optical depth by lidar, Atmos. Res., 61, 114.
  • Gobbi, G. P., F. Barnaba, R. van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini (2003), Lidar and in situ observations of continental and Saharan aerosol: Closure analysis of particles optical and physical properties, Atmos. Chem. Phys. Discuss., 3, 445477.
  • Hasan, H., and T. G. Dzubay (1983), Apportioning light extinction coefficients to chemical species in atmospheric aerosol, Atmos. Environ., 17(8), 15731581.
  • Hobbs, P. V. (1993), Aerosol-cloud interactions, in Aerosol-Cloud-Climate Interactions, edited by P. V. Hobbs, pp. 3369, Academic, San Diego, Calif.
  • Hoff, R. M., H. A. Wiebe, and L. Guise-Bagley (1996), Lidar, nephelometer, and in situ aerosol experiments in southern Ontario, J. Geophys. Res., 101(D14), 19,19919,209.
  • Horvath, H. (1998), Influence of atmospheric aerosols upon the global radiation balance, in Atmospheric Particles, edited by R. M. Harrison, and R. van Grieken, pp. 543596, John Wiley, Hoboken, N. J.
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (Eds.) (2001), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York.
  • Hulbert, E. O. (1941), Optics of atmospheric haze, J. Opt. Soc. Am., 31(7), 467476.
  • Klett, J. D. (1985), Lidar inversion with variable backscatter/extinction ratios, Appl. Opt., 24(11), 16381643.
  • Kovalev, V. A. (1995), Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: Influence of a monotonic change in the aerosol extinction coefficient, Appl. Opt., 34(18), 34573462.
  • Kovalev, V. A. (2003), Stable near-end solution of the lidar equation for clear atmosphere, Appl. Opt., 42(3), 585591.
  • Kovalev, V. A., and H. Moosmüller (1994), Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere, Appl. Opt., 33(27), 64996507.
  • LaRocca, A. J., and R. E. Turner (1975), Atmospheric transmittance and radiance: Methods of calculation, Rep. 107600-10-T, Environ. Res. Inst. of Mich., Ann Arbor.
  • Marenco, F., V. Santacesaria, A. F. Bais, D. Balis, A. di Sarra, A. Papayannis, and C. Zerefos (1997), Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (Photochemical Activity and Solar Ultraviolet Radiation Campaign), Appl. Opt., 36(27), 68756886.
  • Mayor, S. D., and E. W. Eloranta (2001), Two-dimensional vector wind fields from volume imaging lidar data, J. Appl. Meteorol., 40, 13311346.
  • Mishchenko, M. I. (2000), Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation, Appl. Opt., 39(6), 10261031.
  • Mishchenko, M. I., L. D. Travis, and A. Macke (2000), T-matrix method and its applications, in Light Scattering by Nonspherical Particles, edited by M. I. Mishcenko, J. W. Hovenier, and L. D. Travis, pp. 147172, Academic, San Diego, Calif.
  • Müller, D., U. Wandinger, D. Althausen, and M. Fiebig (2001), Comprehensive particle characterization from three-wavelength Raman-lidar observations: Case study, Appl. Opt., 40(27), 48634869.
  • NASA (1976), U.S. Standard Atmosphere Supplements, 1976, U.S. Govt. Print. Off., Washington, D. C.
  • Ouimette, J. R., and R. C. Flagan (1982), The extinction coefficient of multicomponent aerosols, Atmos. Environ., 16(10), 24052419.
  • Pahlow, M., J. Kleissl, M. B. Parlange, J. Ondov, and D. Harrison (2004a), Atmospheric boundary layer structure as observed during a haze event due to forest fire smoke, Boundary Layer Meteorol., in press.
  • Pahlow, M., V. A. Kovalev, and M. B. Parlange (2004b), Calibration method for multiangle lidar measurements, Appl. Opt., 43(14), 29482956.
  • Redemann, J., R. P. Turco, R. F. Pueschel, E. V. Browell, and W. B. Grant (1996), Comparison of aerosol measurements by lidar and in situ methods in the Pacific basin troposphere, in Advances in Atmospheric Remote Sensing With Lidar: Selected Papers of the 18th ILRC, edited by A. Ansmann et al., pp. 5558, Springer-Verlag, New York.
  • Redemann, J., et al. (2000), Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX, J. Geophys. Res., 105(D8), 99499970.
  • Sasano, Y., and E. V. Browell (1989), Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations, Appl. Opt., 28(9), 16701679.
  • Sassen, K., and B. S. Cho (1992), Subvisual-thin cirrus lidar dataset for satellite verification and climatological research, J. Appl. Meteorol., 31, 12751285.
  • Sassen, K., M. K. Griffin, and G. C. Dodd (1989), Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications, J. Appl. Meteorol., 28, 9198.
  • Sloane, C. S. (1986), Effect of composition on aerosol light scattering efficiencies, Atmos. Environ., 20(5), 10251037.
  • Smyth, K. C., and C. R. Shaddix (1996), The elusive history of m = 1.57–0.56i for the refractive index of soot, Combust. Flame, 107, 314320.
  • Upendra, N. S., S. Ismail, and G. K. Schwemmer (Eds.) (1998), Nineteenth International Laser Radar Conference, Rep. NASA/CP-1998–207671/PT2, NASA, Greenbelt, Md.
  • van de Hulst, H. C. (1981), Light Scattering by Small Particles, Dover, Mineola, N. Y.
  • Weinman, J. (1988), Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar, Appl. Opt., 27(19), 39944001.
  • Welton, E. J., K. J. Voss, P. K. Quinn, P. Flatau, K. Markowicz, J. Campbell, J. D. Spinhirne, H. R. Gordon, and J. Johnson (2002), Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars, J. Geophys. Res., 107(D1), 8019, doi:10.1029/2000JD000038.