SEARCH

SEARCH BY CITATION

References

  • Apelblat, A., and E. Manzurola (1987), Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K, J. Chem. Thermodyn., 19, 317320.
  • Artaxo, P., H. Storms, F. Bruynseels, R. V. Grieken, and W. Maenhaut (1988), Composition and source of aerosols from the Amazon basin, J. Geophys. Res., 93, 16051615.
  • Bertram, A. K., T. Koop, L. T. Molina, and M. J. Molina (2000), Ice formation in (NH4) (2)SO4-H2O particles, J. Phys. Chem. A, 104(3), 584588.
  • Braban, C. F., J. P. D. Abbatt, and D. J. Cziczo (2001), Deliquescence of ammonium sulfate particles at sub-eutectic temperatures, Geophys. Res. Lett., 28(20), 38793882.
  • Braban, C. F., M. F. Carroll, S. A. Styler, and J. P. D. Abbatt (2003), Phase transitions of malonic and oxalic acid aerosols, J. Phys. Chem. A, 107, 65946602.
  • Brooks, S. D., M. E. Wise, M. Cushing, and M. A. Tolbert (2002), Deliquescence behavior of organic/ammonium sulfate aerosol, Geophys. Res. Lett., 29(19), 1917, doi:10.1029/2002GL014733.
  • Chebbi, A., and P. Carlier (1996), Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review, Atmos. Environ., 30(24), 42334249.
  • Clegg, S. L., P. Brimblecombe, and A. S. Wexler (1998), Thermodynamic model of the system H+-NH4+-SO42−-NO3-H2O at tropospheric temperatures, J. Phys. Chem. A, 102(12), 21372154.
  • Cruz, C. N., and S. N. Pandis (2000), Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol, Environ. Sci. Technol., 34(20), 43134319.
  • Cziczo, D. J., and J. P. D. Abbatt (1999), Deliquescence, efflorescence, and supercooling of ammonium sulfate aerosols at low temperature: Implications for cirrus cloud formation and aerosol phase in the atmosphere, J. Geophys. Res., 10(D11), 13,78113,790.
  • DeMott, P. J. (2002), Laboratory studies of cirrus cloud processes, in Cirrus, edited by D. K. Lynch, K. Sassen, D. O. Starr, and G. Stephens, pp. 102136, Oxford Univ. Press, New York.
  • Environmental Protection Agency (1996), Air quality criteria for particulate matter, Rep. EPA/600/P-95/001, Washington, D. C.
  • Finlayson-Pitts, B. J., and J. N. Pitts Jr. (2000), Chemistry of the Upper and Lower Atmosphere, Academic, San Diego, Calif.
  • Fortin, T. J., J. E. Shilling, and M. A. Tolbert (2002), Infrared spectroscopic study of the low-temperature phase behavior of ammonium sulfate, J. Geophys. Res., 107(D10), 4088, doi:10.1029/2001JD000677.
  • Fredenslund, A., and J. M. Sorensen (1994), Group contribution estimation methods, in Models for Thermodynamic and Phase Equilibria Calculations, edited by S. I. Sandler, pp. 287361, Marcel Dekker, New York.
  • Fredenslund, A., R. L. Jones, and J. M. Prausnitz (1975), Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE J., 21, 10861099.
  • Fredenslund, A., J. Gmehling, and P. Rasmussen (1977), Vapor-Liquid Equilibria Using UNIFAC, Elsevier Sci., New York.
  • Goff, J. A., and S. Gratch (1946), Low-pressure properties of water from −160 to 212 F, Trans. Am. Soc. Heat. Ventil. Eng., 52, 95122.
  • Hanson, D. R., and A. R. Ravishankara (1993), Reaction of ClONO2 with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N2O5 and ClONO2 on frozen sulfuric acid, J. Geophys. Res., 98(D12), 22,93122,936.
  • Hatakeyama, S., T. Tanonaka, J. Weng, H. Bandow, H. Takagi, and H. Akimoto (1985), Ozone-cyclohexene reaction in air: Quantitative analysis of particulate products and the reaction mechanism, Environ. Sci. Technol., 19, 935941.
  • Kanakidou, M., K. Tsigaridis, F. J. Dentener, and P. J. Crutzen (2000), Human-activity-enhanced formation of organic aerosols by biogenic hydrocarbon oxidation, J. Geophys. Res., 105(D7), 92439254.
  • Kawamura, K., and I. R. Kaplan (1987), Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles ambient air, Environ. Sci. Technol., 21, 105110.
  • Kawamura, K., H. Kasukabe, and L. A. Barrie (1996a), Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations, Atmos. Environ., 30(10–11), 17091722.
  • Kawamura, K., R. Semere, Y. Imai, Y. Fujii, and M. Hayashi (1996b), Water soluble dicarboxylic acids and related compounds in Antarctic aerosols, J. Geophys. Res., 101(D13), 18,72118,728.
  • Koop, T., H. P. Ng, L. T. Molina, and M. J. Molina (1998), A new optical technique to study aerosol phase transitions: The nucleation of ice from H2SO4 aerosols, J. Phys. Chem. A, 102(45), 89248931.
  • Koop, T., A. Kapilashrami, L. T. Molina, and M. J. Molina (2000), Phase transitions of sea-salt/water mixtures at low temperatures: Implications for ozone chemistry in the polar marine boundary layer, J. Geophys. Res., 105(D21), 26,39326,402.
  • Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier (1996), A global three-dimensional model study of carbonaceous aerosols, J. Geophys. Res., 10(D14), 19,41119,432.
  • Martin, S. T. (1998), Phase transformations of the ternary system (NH4)2SO4-H2SO4-H2O and the implications for cirrus cloud formation, Geophys. Res. Lett., 25(10), 16571660.
  • Martin, S. T. (2000), Phase transitions of aqueous atmospheric particles, Chem. Rev., 100(9), 34033453.
  • Middlebrook, A. M., L. T. Iraci, L. S. McNeill, B. G. Koehler, M. A. Wilson, O. W. Saastad, M. A. Tolbert, and D. R. Hanson (1993), Fourier transform-infrared studies of thin H2SO4/H2O films—Formation, water-uptake, and solid-liquid phase-changes, J. Geophys. Res., 98(D11), 20,47320,481.
  • Ming, Y., and L. M. Russell (2002), Thermodynamic equilibrium of organic-electrolyte mixtures in aerosol particles, AIChE J., 48, 13311348.
  • Mozurkewich, M., and J. G. Calvert (1988), Reaction probability of N2O5 on aqueous aerosols, J. Geophys. Res., 93(D12), 15,88915,896.
  • Onasch, T. B., R. L. Siefert, S. D. Brooks, A. J. Prenni, B. Murray, M. A. Wilson, and M. A. Tolbert (1999), Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature, J. Geophys. Res., 104(D17), 21,31721,326.
  • Peng, C., M. N. Chan, and C. K. Chan (2001), The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions, Environ. Sci. Technol., 35(22), 44954501.
  • Prenni, A. J., P. J. DeMott, S. M. Kreidenweis, D. E. Sherman, L. M. Russell, and Y. Ming (2001), The effects of low molecular weight dicarboxylic acids on cloud formation, J. Phys. Chem. A, 105(50), 11,24011,248.
  • Reid, R. C., J. M. Prausnitz, and B. E. Poling (1987), The Properties of Gases and Liquids, McGraw-Hill, New York.
  • Salcedo, D., L. T. Molina, and M. J. Molina (2000), Nucleation rates of nitric acid dihydrate in 1: 2 HNO3/H2O solutions at stratospheric temperatures, Geophys. Res. Lett., 27(2), 193196.
  • Salcedo, D., L. T. Molina, and M. J. Molina (2001), Homogeneous freezing of concentrated aqueous nitric acid solutions at polar stratospheric temperatures, J. Phys. Chem. A, 105(9), 14331439.
  • Saxena, P., and L. M. Hildemann (1996), Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24(1), 57109.
  • Stephen, H., and T. Stephen (1963), Solubilities of Inorganic and Organic Compounds, Macmillan, New York.
  • Tabazadeh, A., and O. B. Toon (1998), The role of ammoniated aerosols in cirrus cloud nucleation, Geophys. Res. Lett., 25(9), 13791382.
  • Talbot, R. W., M. O. Andreae, T. W. Andreae, and R. C. Harriss (1988), Regional aerosol chemistry of the Amazon Basin during the dry season, J. Geophys. Res., 93(D2), 14991508.
  • Tang, I. N., and H. R. Munkelwitz (1993), Composition and temperature-dependence of the deliquescence properties of hygroscopic aerosols, Atmos. Environ. Part A, 27(4), 467473.
  • Wise, M. E., J. D. Surratt, D. B. Curtis, J. E. Shilling, and M. A. Tolbert (2003), Hygroscopic growth of ammonium sulfate/dicarboxylic acids, J. Geophys. Res., 108(D20), 4638, doi:10.1029/2003JD003775.
  • Yao, X. H., M. Fang, and C. K. Chan (2002), Size distributions and formation of dicarboxylic acids in atmospheric particles, Atmos. Environ., 36(13), 20992107.
  • Zuberi, B., A. K. Bertram, T. Koop, L. T. Molina, and M. J. Molina (2001), Heterogeneous freezing of aqueous particles induced by crystallized (NH4) (2)SO4, ice, and letovicite, J. Phys. Chem. A, 105(26), 64586464.