• Anderson, S. M., and M. S. Zahniser (1992), Open-path tunable diode laser absorption for eddy correlation flux measurements of atmospheric trace gases, Proc. SPIE, 1433, 167178.
  • Armstrong, B. H. (1967), Spectrum line profiles: The Voigt function, J. Quant. Spectrosc. Radiat. Transfer, 7, 6188.
  • Brassington, D. J. (1995), Tunable diode laser absorption spectroscopy for the measurement of atmospheric species, Adv. Spectrosc., 24, 85148.
  • Brown, L. R., R. H. Hunt, and A. S. Pine (1979), Wavenumbers, line strengths and assignments in the Doppler-limited spectrum of formaldehyde from 2700 to 3000 cm−1, J. Mol. Spectrosc., 75, 406428.
  • Chu, P. M., S. J. Wetzel, W. L. Lafferty, A. Perrin, J.-M. Flaud, P. Arcas, and G. Guelachvili (1998), Line intensities for the 8 μm bands of SO2, J. Mol. Spectrosc., 189, 5563.
  • Edwards, G. E., H. H. Neumann, G. Den Hartog, G. W. Thurtell, and G. Kidd (1994), Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake Tower Site during the Northern Wetlands Study (NOWES), J. Geophys. Res, 99, 15111517.
  • Fried, A., B. Henry, B. Wert, S. Wewell, and J. R. Drummond (1998), Laboratory, ground-based, and airborne tunable diode laser systems: Performance characteristics and applications in atmospheric studies, Appl. Phys. B, 67, 317330.
  • Fried, A., et al. (2003), Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons, J. Geophys. Res., 108(D4), 8365, doi:10.1029/2002JD002208.
  • Gilpin, T., et al. (1997), Intercomparison of six ambient [CH2O] measurement techniques, J. Geophys. Res., 102, 21,16121,188.
  • Heikes, B., B. McCully, X. Zhou, Y.-N. Lee, K. Mopper, X. Chen, G. Mackay, D. Karecki, H. Schiff, T. Campos, and E. Atlas (1996), Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa Photochemistry Experiment 2, J. Geophys. Res., 101, 14,74114,755.
  • Hinkley, E. D., and P. L. Kelley (1971), Detection of air pollutants with tunable diode lasers, Science, 171, 635639.
  • Holloway, J. S., R. O. Jakoubek, D. D. Parrish, C. Gerbig, A. Volz-Thomas, S. Schmitgen, A. Fried, B. Wert, B. Henry, and J. R. Drummond (2000), Airborne intercomparison of vacuum ultraviolet fluorescence and tunable diode laser absorption measurements of troposphere carbon monoxide, J. Geophys. Res., 105, 24,25124,261.
  • Horii, C. V., M. S. Zahniser, D. Nelson, J. B. McMannus, and S. C. Wofsy (1999), Nitric aid and nitrogen dioxide flux measurements: A new application of tunable diode laser absorption spectroscopy, Proc. SPIE, 3758, 152161.
  • Humlicek, J. (1979), An efficient method for evaluation of the complex probability function: The Voigt function and its derivatives, J. Quant. Spectrosc. Radiat. Transfer, 21, 309313.
  • Kormann, R., H. Fischer, C. Gurk, F. Helleis, T. Klupfel, K. Kowalski, R. Konigstedt, U. Parchatka, and V. Wagner (2002), Application of a multi-laser tunable diode laser absorption spectrometer for atmospheric trace gas measurements at sub-ppbv levels, Spectrochim. Acta A, 58, 24892498.
  • Ku, R. T., E. D. Hinkely, and J. O. Samole (1975), Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system, Appl. Opt., 14, 854861.
  • Mandin, J.-Y., V. Dana, A. Perrin, J.-M. Flaud, C. Peyret-Camy, L. Régalia, and A. Barbe (1997), The {ν1 + 2 ν2, ν1 + ν3} bands of 14N16O2: Line positions and intensities; line intensities in the ν1 + ν2 + ν3 − ν2 hot band, J. Mol. Spectrosc., 181, 379388.
  • McManus, J. B., P. L. Kebabian, and M. S. Zahniser (1995), Atigmatic mirror multiple pass absorption cells for long pathlength spectroscopy, Appl. Opt., 34, 33363348.
  • Nelson, D. D., M. S. Zahniser, J. B. MacManus, and J. H. Shorter (1996), Recent improvements in atmospheric trace gas monitoring using mid-infrared tunable diode lasers, Proc. SPIE, 2834, 148159.
  • Rothman, L. S., et al. (1998), The HITRAN molecular spectroscopic database and hawks (HITRAN atmospheric workstation): 1996 edition, J. Quant. Spectrosc. Radiat. Transfer, 60, 665710.
  • Smith, M. A. H., C. P. Rinsland, B. Fridovich, and K. N. Rao (1985), Intensities and collision broadening parameters from Infrared Spectra, Mol. Spectrosc. Model Res., 3, 111248.
  • Werle, P., R. Mucke, and F. Slemr (1993), The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode laser absorption spectroscopy (TDLAS), Appl. Phys. B, 57, 131139.
  • Wert, B. P., A. Fried, S. Rauenbuehler, J. Walega, and B. Henry (2003), Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements, J. Geophys. Res., 108(D12), 4350, doi:10.1029/2002JD002872.
  • Wienhold, F. G., H. Frahm, and G. W. Harris (1994), Measurements of N2O fluxes from fertilized grassland using a fast response tunable diode laser spectrometer, J. Geophys. Res., 99, 16,55716,567.
  • Zahniser, M. S., D. D. Nelson, J. B. MaManus, and P. L. Kebabian (1995), Measurement of trace gas fluxes using tunable diode laser spectroscopy, R. Soc. London, A, 351, 371382.
  • Zenker, T., et al. (1998), Intercomparison of NO, NO2, NOy, O3, and ROx measurements during the oxidizing capacity of the tropospheric atmosphere (OCTA) campaign 1993 at Izana, J. Geophys. Res., 103, 13,61513,634.