SEARCH

SEARCH BY CITATION

References

  • Andreae, M. O. (1991), Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate, in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, edited by J. S. Levine, pp. 321, MIT Press, Cambridge, Mass.
  • Andreae, M. O., and P. Merlet (2001), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15, 966995.
  • Andreae, M. O., E. Atlas, H. Cachier, W. R. Cofer III, G. W. Harris, G. Helas, R. Koppmann, J.-P. Lacaux, and D. E. Ward (1996), Trace gas and aerosol emissions from savanna fires, in Biomass Burning and Global Change, edited by J. S. Levine, pp. 278295, MIT Press, Cambridge, Mass.
  • Araújo, T. M., J. A. Carvalho, N. Higuchi, A. C. P. Brasil, and A. L. A. Mesquita (1999), A tropical rainforest clearing experiment by biomass burning in the state of Pará, Brazil, Atmos. Environ., 33, 19911998.
  • Arino, O., and J.-M. Melinotte (1998), The 1993 Africa Fire Map, Int. J. Remote Sens., 19, 20192023.
  • Arino, O., and S. Plummer (Eds.) (2001), Along Track Scanning Radiometer World Fire Atlas: Validation of the 1997–98 Active Fire Product, ESA-ESRIN, Frascati, Italy.
  • Barbosa, P. M., D. Stroppiana, J.-M. Grégoire, and J. M. C. Pereira (1999), An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass and atmospheric emissions, Global Biogeochem. Cycles, 13, 933950.
  • Barrett, D. J. (2002), Steady state turnover time of carbon in the Australian terrestrial biosphere, Global Biogeochem. Cycles, 16(4), 1108, doi:10.1029/2002GB001860.
  • Batjes, N. H. (1996), Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 47, 151163.
  • Bergamaschi, P., R. Hein, M. Heimann, and P. J. Crutzen (2000a), Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios, J. Geophys. Res., 105, 19091927.
  • Bergamaschi, P., R. Hein, C. A. M. Brenninkmeijer, and P. J. Crutzen (2000b), Inverse modeling of the global CO cycle: 2. Inversion of 13C/12C and 18O/16O isotope ratios, J. Geophys. Res., 105, 19291945.
  • Bertschi, I., R. J. Yokelson, D. E. Ward, R. E. Babbitt, R. A. Susott, J. G. Goode, and W. M. Hao (2003a), Trace gas and particle emissions from fires in large diameter and belowground biomass fuels, J. Geophys. Res., 108(D13), 8472, doi:10.1029/2002JD002100.
  • Bertschi, I. T., R. J. Yokelson, D. E. Ward, T. J. Christian, and W. M. Hao (2003b), Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy, J. Geophys. Res., 108(D13), 8469, doi:10.1029/2002JD002158.
  • Brown, S., and G. Gaston (1995), Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Application to tropical Africa, Environ. Monit. Assess., 38, 157168.
  • Brown, S., L. R. Iverson, A. Prasad, and D. Liu (1993), Geographical distributions of carbon in biomass and soils of tropical Asian forests, Geocarto Int., 4, 4559.
  • Carvalho, J. A., N. Higuchi, T. M. Araújo, and J. C. Santos (1998), Combustion completeness in a rainforest clearing experiment in Manaus, Brazil, J. Geophys. Res., 103, 13,19513,199.
  • Carvalho, J. A., F. S. Costa, C. A. G. Veras, D. V. Sandberg, E. C. Alvarado, R. Gielow, A. M. Serra, and J. C. Santos (2001), Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil, J. Geophys. Res., 106, 17,87717,887.
  • Crutzen, P. J., and M. O. Andreae (1990), Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 16691678.
  • DeFries, R., M. Hansen, J. R. G. Townshend, A. C. Janetos, and T. R. Loveland (2000), A new global 1 km data set of percentage tree cover derived from remote sensing, Global Change Biol., 6, 247254.
  • Fearnside, P. M., N. Leal, and F. M. Fearnside (1993), Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon, J. Geophys. Res., 98, 16,73316,743.
  • Fearnside, P. M., P. M. L. A. Graça, N. L. Filho, F. J. A. Rodrigues, and J. M. Robinson (1999), Tropical forest burning in Brazilian Amazonia: Measurement of biomass loading, burning efficiency and charcoal formation at Altamira, Pará, For. Ecol. Manage., 123, 6579.
  • Fearnside, P. M., P. M. L. A. Graça, and F. J. A. Rodrigues (2001), Burning of Amazonian rainforests: Burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil, For. Ecol. Manage., 146, 115128.
  • French, N. H. F., E. S. Kasischke, and D. G. Williams (2002), Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest, J. Geophys. Res., 107, 8151, doi:10.1029/2001JD000480 [printed 108(D1), 2003].
  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, and P. J. Fraser (1991), Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13,03313,065.
  • Gill, R. A., et al. (2002), Using simple environmental variables to estimate below-ground productivity in grasslands, Global Ecol. Biogeogr., 11, 7986.
  • Goode, J. G., R. J. Yokelson, D. E. Ward, R. A. Susott, R. E. Babbitt, M. A. Davies, and W. M. Hao (2000), Measurements of excess O3, CO2, CO, CH4, C2H4, C2H2, HCN, NO, NH3, HCOOH, CH3COOH, HCHO, and CH3OH in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR), J. Geophys. Res., 105, 22,14722,166.
  • Graça, P. M. L. A., P. M. Fearnside, and C. C. Cerri (1999), Burning of Amazonian forest in Ariquemes, Rondônia, Brazil: Biomass, charcoal formation and burning efficiency, For. Ecol. Manage., 120, 179191.
  • Grégoire, J.-M., K. Tansey, and J. M. N. Silva (2003), The GBA2000 initiative: Developing a global burned area database from SPOT-VEGETATION imagery, Int. J. Remote Sens., 24, 13691376.
  • Guild, L. S., J. B. Kauffman, L. J. Ellingson, D. L. Cummings, E. A. Castro, R. E. Babbitt, and D. E. Ward (1998), Dynamics associated with total aboveground biomass C, nutrient pools, and biomass burning of primary forest and pasture in Rondônia, Brazil during SCAR-B, J. Geophys. Res., 103, 32,09132,100.
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, and R. Sohlberg (2000), Global land cover classification at 1 km spatial resolution using a classification tree approach, Int. J. Remote Sens., 21, 13311364.
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, R. Sohlberg, C. Dimiceli, and M. Carroll (2002), Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data, Remote Sens. Environ., 83, 303319.
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, M. Carroll, C. Dimiceli, and R. A. Sohlberg (2003), Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm, Earth Interact., 7(10), 115.
  • Hao, W. M., and M.-H. Liu (1994), Spatial and temporal distribution of tropical biomass burning, Global Biogeochem. Cycles, 8(4), 495503.
  • Hao, W. M., M.-H. Liu, and P. J. Crutzen (1990), Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975–1980, in Fire in the Tropical Biota: Ecosystem Processes and Global Challenges, edited by J. G. Goldammer, pp. 440462, Springer-Verlag, New York.
  • Harmon, M. E., and C. Hua (1991), Coarse woody debris dynamics in two old-growth ecosystems, BioScience, 41, 604610.
  • Heimann, M., and E. Maier-Reimer (1996), On the relations between the oceanic uptake of CO2 and its carbon isotopes [CO2], Global Biogeochem. Cycles, 10, 89110.
  • Hély, C., K. Caylor, S. Alleaume, R. J. Swap, and H. H. Shugart (2003), Release of gaseous and particulate carbonaceous compounds from biomass burning during the SAFARI 2000 dry season field campaign, J. Geophys. Res., 108(D13), 8470, doi:10.1029/2002JD002482.
  • Hoffa, E. A., D. E. Ward, W. M. Hao, R. A. Susott, and R. H. Wakimoto (1999), Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res., 104, 13,84113,853.
  • Holloway, T., H. Levy II, and P. Kasibhatla (2000), Global distribution of carbon monoxide, J. Geophys. Res., 105, 12,12312,147.
  • Houghton, R. A., K. T. Laurence, J. L. Hackler, and S. Brown (2001), The spatial distribution of forest biomass in the Brazilian Amazon: A comparison of estimates, Global Change Biol., 7, 731746.
  • Hurst, D. F., D. W. T. Griffith, and G. D. Cook (1994a), Trace gas emissions and biomass burning in tropical Australian savannas, J. Geophys. Res., 99, 16,44116,456.
  • Hurst, D. F., D. W. T. Griffith, J. N. Carras, D. J. Williams, and P. J. Fraser (1994b), Measurements of trace gas emitted by Australian savanna fires during the 1990 dry season, J. Atmos. Chem., 18, 3356.
  • Jenkins, J. C., R. A. Birdsey, and Y. Pan (2001), Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data, Ecol. Appl., 11, 11741193.
  • Jobbágy, E. G., and R. B. Jackson (2000), The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecol. Appl., 10, 423436.
  • Kauffman, J. B., D. L. Cummings, and D. E. Ward (1998), Fire in the Brazilian Amazon, 2, Biomass, nutrient pools and losses in cattle pastures, Oecologia, 113, 415427.
  • Kicklighter, D. W., et al. (1999), A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models, Tellus Ser. B, 51, 343366.
  • Lavoué, D., C. Liousse, H. Cachier, B. J. Stocks, and J. G. Goldammer (2000), Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes, J. Geophys. Res., 105, 26,87126,890.
  • Lindesay, J. A., M. O. Andreae, J. G. Goldammer, G. Harris, H. J. Annegarn, M. Garstang, R. J. Scholes, and B. W. van Wilgen (1996), International Geosphere-Biosphere Programme/International Global Atmospheric Chemistry SAFARI-92 field experiment: Background and overview, J. Geophys. Res., 101(D19), 23,52123,530.
  • Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier (1996), A global three-dimensional model study of carbonaceous aerosols, J. Geophys. Res., 101, 19,41119,432.
  • Liski, J., and P. Kauppi (2000), Wood supply and carbon sequestration: Situation and changes, B, Carbon cycle and biomass, in Forest Resources of Europe, CIS, North America, Australia, Japan and New Zealand (Industrialized Temperate/Boreal Countries): United Nations-Economic Commission for Europe/Food and Agriculture Organization Contribution to the Global Forest Resources Assessment 2000, pp. 155171, United Nations, New York.
  • Lobert, J. M., W. C. Keene, L. A. Logan, and R. Yevich (1999), Global chlorine emissions from biomass burning: Reactive chlorine emissions inventory, J. Geophys. Res., 104, 83738389.
  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, J. Zhu, L. Yang, and J. W. Merchant (2000), Development of a global land cover characteristics database and IGBP Discover from 1 km AVHRR data, Int. J. Remote Sens., 21, 13031330.
  • Matthews, E. (1983), Global vegetation and land use: New high-resolution data bases for climate studies, J. Clim. Appl. Meteorol., 22, 474487.
  • Matthews, E. (1997), Global litter production, pools, and turnover times: Estimates from measurement data and regression models, J. Geophys. Res., 102, 18,77118,800.
  • Menaut, J. C., L. Abbadie, F. Lavenu, P. Loudjani, and A. Podaire (1991), Biomass burning in west African savannas, in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, edited by J. S. Levine, pp. 133142, MIT Press, Cambridge, Mass.
  • Myneni, R. B., R. R. Nemani, and S. W. Running (1997), Estimation of global leaf area index and absorbed par using radiative transfer models, IEEE Trans. Geosci. Remote Sens., 35, 13801393.
  • Myneni, R. B., J. Dong, C. J. Tucker, R. K. Kaufmann, P. E. Kauppi, J. Liski, L. Zhou, V. Alexeyev, and M. K. Hughes (2001), A large carbon sink in the woody biomass of northern forests, Proc. Natl. Acad. Sci. USA, 98(26), 14,78414,789.
  • National Greenhouse Gas Inventory Committee (NGGIC) (2002), National Greenhouse Gas Inventory 2000, Aust. Greenhouse Off., Canberra, ACT.
  • Olson, J. S. (1994), Global ecosystems framework: Definitions, Internal Rep., U.S. Geol. Surv., EROS Data Cent., Sioux Falls, S. D.
  • Page, S. E., F. Siegert, J. O. Rieley, H.-D. V. Boehm, A. Jaya, and S. Limin (2002), The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, 420, 6165.
  • Potter, C. S., V. Brooks-Genovese, S. A. Klooster, M. Bobo, and A. Torregrosa (2001), Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region, Atmos. Environ., 35(10), 17731781.
  • Prather, M. J. (1996), Timescales in atmospheric chemistry: Theory, GWPs for CH4, and CO, and runaway growth, Geophys. Res. Lett., 23, 25972600.
  • Roads, J. O., et al. (2003), GCIP water and energy budget synthesis (WEBS), J. Geophys. Res., 108(D16), 8609, doi:10.1029/2002JD002583.
  • Roy, D. P., P. E. Lewis, and C. O. Justice (2002), Burned area mapping using multi-temporal moderate spatial resolution data—A bi-directional reflectance model-based expectation approach, Remote Sens. Environ., 83, 263286.
  • Russell-Smith, J., A. C. Edwards, and G. D. Cook (2003), Reliability of biomass burning estimates from savanna fires: Biomass burning in northern Australia during the 1999 Biomass Burning and Lightning Experiment B field campaign, J. Geophys. Res., 108(D3), 8405, doi:10.1029/2001JD000787.
  • Saket, M. (2001), Wood volume and woody biomass, in Global Forest Resources Assessment 2000, edited by A. Perlis, pp. 1722, Forest and Agric. Org. of the United Nations, Rome.
  • Schimel, D., D. Alves, I. Enting, M. Heimann, F. Joos, D. Raynaud, and T. Wigley (1996), Radiative forcing of climate change: CO2 and the carbon cycle, in IPCC Climate Change: The Science of Climate Change, edited by J. T. Houghton et al., chap. 2.1, pp. 7686, Cambridge Univ. Press, New York.
  • Scholes, R. J., J. Kendall, and C. O. Justice (1996), The quantity of biomass burned in southern Africa, J. Geophys. Res., 101, 23,66723,676.
  • Seiler, W., and P. J. Crutzen (1980), Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Clim. Change, 2, 207247.
  • Shea, R. W., B. W. Shea, J. B. Kauffman, D. E. Ward, C. I. Haskins, and M. C. Scholes (1996), Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, 23,55123,568.
  • Shirai, T., et al. (2003), Emission estimates of selected volatile organic compounds from tropical savanna burning in northern Australia, J. Geophys. Res., 108(D3), 8406, doi:10.1029/2001JD000841.
  • Siegenthaler, U., and J. L. Sarmiento (1993), Atmospheric carbon dioxide and the ocean, Nature, 365, 119125.
  • Silva, J. M. N., J. M. C. Pereira, A. I. Cabral, A. C. L. Sá, M. J. P. Vasconcelos, B. Mota, and J.-M. Grégoire (2003), An estimate of the area burned in southern Africa during the 2000 dry season using SPOT-VEGETATION satellite data, J. Geophys. Res., 108(D13), 8498, doi:10.1029/2002JD002320.
  • Simon, M., S. Plummer, F. Fierli, J. Hoelzemann, and O. Arino (2004), Burnt area detection at global scale using ATSR-2: The GLOBSCAR products and their qualification, J. Geophys. Res., 109, D14S02, doi:10.1029/2003JD003622, in press.
  • Sinha, P., P. V. Hobbs, R. J. Yokelson, I. T. Bertschi, D. R. Blake, I. J. Simpson, S. Gao, T. W. Kirchstetter, and T. Novakov (2003), Emissions of trace gases and particles from savanna fires in southern Africa, J. Geophys. Res., 108(D13), 8487, doi:10.1029/2002JD002325.
  • Swap, R. J., H. J. Annegarn, J. T. Suttles, M. D. King, S. Platnick, J. L. Privette, and R. J. Scholes (2003), Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000), J. Geophys. Res., 108(D13), 8465, doi:10.1029/2003JD003747.
  • Tans, P., J. Berry, and P. Keeling (1993), Oceanic 13C/12C observations: A new window on ocean CO2 uptake, Global Biogeochem. Cycles, 7, 353368.
  • Tansey, K. (2002), Implementation of regional burnt area algorithms for the GBA-2000 initiative, Rep. EUR 20532 EN, Joint Res. Cent., Eur. Commiss., Ispra, Italy.
  • van der Werf, G. R., J. T. Randerson, G. J. Collatz, and L. Giglio (2003), Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Biol., 9, 547562.
  • Ward, D. E., and L. F. Radke (1993), Emissions measurements from vegetation fires: A comparative evaluation of methods and results, in Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires, edited by P. J. Crutzen, and J. G. Goldammer, pp. 5376, John Wiley, Hoboken, N. J.
  • Ward, D. E., W. M. Hao, R. A. Susott, R. E. Babbitt, R. W. Shea, J. B. Kauffman, and C. O. Justice (1996), Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems, J. Geophys. Res., 101, 23,56923,576.
  • Waring, R. H., J. J. Landsberg, and M. Williams (1998), Net primary production of forests: A constant fraction of gross primary production? Tree Physiol., 18, 129134.
  • Warneck, P. (1988), Chemistry of the Natural Atmosphere, Academic, San Diego, Calif.
  • Yevich, R., and J. A. Logan (2003), An assessment of biofuel use and burning of agricultural waste in the developing world, Global Biogeochem. Cycles, 17(4), 1095, doi:10.1029/2002GB001952.
  • Yokelson, R. J., I. T. Bertschi, T. J. Christian, P. V. Hobbs, D. E. Ward, and W. M. Hao (2003), Trace gas measurements in nascent, aged, and cloud-processed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR), J. Geophys. Res., 108(D13), 8478, doi:10.1029/2002JD002322.
  • Zeng, X., R. E. Dickinson, A. Walker, M. Shaikh, R. S. DeFries, and J. Qi (2000), Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling, J. Appl. Meteorol., 39, 826839.
  • Zhu, Z., and E. Waller (2001), FRA 2000 global forest cover mapping final report, For. Resour. Assess. Prog. Working Pap. 50, edited by P. Pugliese, For. and Agric. Org. of the United Nations, Rome.
  • Zobler, L. (1986), A world soil file for global climate modeling, NASA Tech. Memo. 87802, 33 pp., Greenbelt, Md.