SEARCH

SEARCH BY CITATION

References

  • Allen, C. C., J. L. Gooding, M. J. Jercinovic, and K. Keil (1981), Altered basaltic glass: A terrestrial analog to the soil of Mars, Icarus, 45, 347369.
  • Andersen, D. J., D. H. Lindsley, and P. M. Davidson (1993), QUILF: A PASCAL program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine and quartz, Comput. Geosci., 19, 13331350.
  • Baker, L. L., D. J. Agenbroad, and S. A. Wood (2000), Experimental hydrothermal alteration of a Martian analog basalt: Implications for Martian meteorites, Meteorit. Planet. Sci., 35, 3138.
  • Bandfield, J. L. (2002), Global mineral distributions on Mars, J. Geophys. Res., 107(E6), 5042, doi:10.1029/2001JE001510.
  • Bandfield, J. L., V. E. Hamilton, and P. R. Christensen (2000), A global view of Martian surface compositions from MGS-TES, Science, 287, 16261630.
  • Banin, A. (1996), The missing crystalline minerals in Mars soil, Adv. Space Res., 18, 233240.
  • Banin, A., and L. Margulies (1983), Simulation of Viking biology experiments suggests smectites not palagonite, as Martian soil analogues, Nature, 305, 523525.
  • Banin, A., B. C. Clark, and H. Wanke (1992), Surface chemistry and mineralogy, in Mars, edited by H. H. Kieffer et al., pp. 594625, Univ. of Ariz. Press, Tuscon.
  • Banin, A., F. X. Han, I. Kan, and A. Cicelsky (1997), Acidic volatiles and the Mars soil, J. Geophys. Res., 102, 13,34113,356.
  • Bell, J. F. (1996), Iron, sulfate, carbonate, and hydrated minerals on Mars, in Mineral Spectroscopy: A Tribute to Roger G. Burns, edited by M. D. Dyar, C. McCammon, and M. W. Schaefer, Spec. Publ. Geochem. Soc., 5, 359380.
  • Bell, J. F., T. B. McCord, and P. D. Owensby (1990), Observational evidence of crystalline iron oxides on Mars, J. Geophys. Res., 95, 14,44714,461.
  • Bell, J. F., et al. (2000), Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder, J. Geophys. Res., 105, 17211755.
  • Bethke, C. M. (2002), The Geochemist's Workbench, Release 4.0: A User's Guide to Rxn, Act2, Tact, React and Gtplot, Univ. of Ill., Urbana-Champaign.
  • Bigham, J. M., and D. K. Nordstrom (2000), Iron and aluminum hydroxysulfates from acid sulfate waters, in Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance, edited by C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, pp. 351403, Mineral. Soc. of Am., Washington, D. C.
  • Bish, D. L., D. T. Vaniman, C. Fialips, J. W. Carey, and W. C. Feldman (2003), Can hydrous minerals account for the observed mid-latitude water on Mars? paper presented at Sixth International Mars Conference, Lunar and Planet. Inst., Pasadena, Calif.
  • Bishop, J. L., and E. Murad (1996), Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars, in Mineral Spectroscopy: A Tribute to Roger G., Burns, edited by M. D. Dyar, C. McCammon, and M. W. Schaefer, Spec. Publ. Geochem. Soc., 5, 337358.
  • Bishop, J. L., C. M. Pieters, and R. G. Burns (1993), Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials, Geochim. Cosmochim. Acta, 57, 45834595.
  • Blum, A. E., and L. L. Stillings (1995), Feldspar dissolution kinetics, in Chemical Weathering Rates of Silicate Minerals, edited by A. F. White, and S. L. Brantley, pp. 291351, Mineral. Soc. of Am., Washington, D. C.
  • Bouska, V. (1993), Natural Glasses, Ellis Horwood, New York.
  • Brantley, S. L., and Y. Chen (1993), Chemical weathering rates of pyroxenes and amphiboles, in Chemical Weathering Rates of Silicate Minerals, edited by A. F. White, and S. L. Brantley, pp. 119172, Mineral. Soc. of Am., Washington, D. C.
  • Bridges, J. C., and M. M. Grady (1999), A halite-siderite-anhydrite-chlorapatite assemblage in Nakhla: Mineralogical evidence for evaporites on Mars, Meteorit. Planet. Sci., 34, 407415.
  • Bridges, J. C., D. C. Catling, J. M. Saxton, T. D. Swindle, I. C. Lyon, and M. M. Grady (2001), Alteration assemblages in Martian meteorites: Implications for near-surface processes, Space Sci. Rev., 96, 365392.
  • Casey, W. H., and B. Bunker (1990), Leaching of mineral and glass surfaces during dissolution, in Mineral-Water Interface Geochemistry, edited by A. F. White, and M. F. Hochella, pp. 397426, Mineral. Soc. of Am., Washington D. C.
  • Casey, W. H., H. R. Westrich, and G. W. Arnold (1988), Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH = 2, 3, and 12, Geochim. Cosmochim. Acta, 52, 27952807.
  • Casey, W. H., J. F. Banfield, H. R. Westrich, and L. McLaughlin (1993), What do dissolution experiments tell us about natural weathering? Chem. Geol., 105, 115.
  • Christensen, P. R., et al. (2000), Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water, J. Geophys. Res., 105, 96239642.
  • Clark, B. C. (1993), Geochemical components in Martian soil, Geochim. Cosmochim. Acta, 57, 45754581.
  • Clark, B. C., and D. C. Van Hart (1981), The salts of Mars, Icarus, 45, 370378.
  • Economou, T. E. (2001), Chemical analyses of Martian soil and rocks obtained by the Pathfinder alpha proton x-ray spectrometer, Radiat. Phys. Chem., 61, 191197.
  • Eggleston, C. M., M. F. Hochella, and G. A. Parks (1989), Sample preparation and aging effects on the dissolution rate and surface composition of diopside, Geochim. Cosmochim. Acta, 53, 797805.
  • Foley, C. N., T. Economou, and R. N. Clayton (2003), Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res., 108(E12), 8096, doi:110.1029/2002JE002019.
  • Ghiorso, M. S., and R. O. Sack (1995), Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in systems at elevated temperatures and pressures, Contrib. Mineral. Petrol., 119, 197212.
  • Gibson, E. K., D. S. McKay, S. J. Wentworth, and R. A. Socki (2003), Zeolite formation and weathering processes within the Martian regolith: An Antarctic analog, Lunar Planet. Sci., XXXIV, abstract 1244.
  • Glass, B. P. (1984), Solution of naturally occurring glasses in the geological environment, J. Non Cryst. Solids, 67, 265286.
  • Golden, D. C., R. V. Morris, D. W. Ming, H. V. Lauer, and S. R. Yang (1993), Mineralogy of three slightly palagonitized basaltic tephra samples from the summit of Mauna Kea, Hawaii, J. Geophys. Res., 98, 34013411.
  • Gooding, J. L. (1992), Soil mineralogy on Mars: Possible clues from salts and clays in SNC meteorites, Icarus, 99, 2841.
  • Gooding, J. L., and K. Keil (1978), Alteration of glass as a possible source of clay minerals on Mars, Geophys. Res. Lett., 5, 727730.
  • Herd, C. D. K., J. J. Papike, and A. J. Brearley (2001), Oxygen fugacity of Martian basalts from electron microprobe oxygen and TEM-EELS analyses of Fe-Ti oxides, Am. Mineral., 86, 10151024.
  • Hoefen, T. M., R. N. Clark, J. L. Bandfield, M. D. Smith, J. C. Pearl, and P. R. Christensen (2003), Discovery of olivine in the Nili Fossae region of Mars, Science, 302, 627630.
  • Holdren, G. R., and R. A. Berner (1979), Mechanism of feldspar weathering, I. Experimental studies, Geochim. Cosmochim. Acta, 43, 11611171.
  • Jambor, J. L., D. K. Nordstrom, and C. N. Alpers (2000), Metal-sulfate salts from sulfide mineral oxidation, in Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance, edited by C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, pp. 305350, Mineral. Soc. of Am., Washington, D. C.
  • Jantzen, C. M., and M. J. Plodinec (1984), Thermodynamic model of natural, medieval and nuclear waste glass durability, J. Non Cryst. Solids, 67, 207223.
  • Knauss, K. G., S. N. Nguyen, and H. C. Weed (1993), Diopside dissolution kinetics as a function of pH, CO2, temperature, and time, Geochim. Cosmochim. Acta, 57, 285294.
  • Lasaga, A. C. (1998), Kinetic Theory in the Earth Sciences, Princeton Univ. Press, Princeton, N. J.
  • McLennan, S. M. (2000), Chemical composition of Martian soil and rocks: Complex mixing and sedimentary transport, Geophys. Res. Lett., 27, 13351338.
  • McLennan, S. M. (2001), Crustal heat production and the thermal evolution of Mars, Geophys. Res. Lett., 28, 40194022.
  • McLennan, S. M. (2003), Sedimentary silica on Mars, Geology, 31, 315318.
  • McSween, H. Y., and K. Keil (2000), Mixing relationships in the Martian regolith and the composition of globally homogeneous dust, Geochim. Cosmochim. Acta, 64, 21552166.
  • McSween, H. Y., et al. (1999), Chemical, multispectral and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res., 104, 86798715.
  • Minitti, M. E., and M. J. Rutherford (1999), Genesis of the Mars Pathfinder sulfur-free rock from a SNC parental magma, Lunar Planet. Sci., XXX, abstract 1198.
  • Morris, R. V., J. L. Gooding, H. V. Lauer, and R. B. Singer (1990), Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil, J. Geophys. Res., 95, 14,42714,434.
  • Morris, R. V., D. W. Ming, D. C. Golden, and J. F. Bell (1996), An occurrence of jarositic tephra on Mauna Kea, Hawaii: Implications for the ferric mineralogy of the Martian surface, in Mineral Spectroscopy: A Tribute to Roger G., Burns, edited by M. D. Dyar, C. McCammon, and M. W. Schaefer, Spec. Publ. Geochem. Soc., 5, 327336.
  • Morris, R. V., et al. (2000a), Mineralogy, composition and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental and magnetic data on terrestrial analogue, SNC meteorite and Pathfinder samples, J. Geophys. Res., 105, 17571817.
  • Morris, R. V., et al. (2000b), Acid sulfate alteration products of a tholeiitic basalt: Implications for interpretation of Martian thermal emission spectra, Lunar Planet. Sci., XXXI, abstract 2014.
  • Morris, R. V., T. G. Graff, S. A. Mertzman, M. D. Lane, and P. R. Christensen (2003), Palagonitic Mars from rock rinds to dust: Evidence from visible, near-IR, and thermal emission spectra of poorly crystalline materials, Lunar Planet. Sci., XXXIV, abstract 1874.
  • Morse, J. W., and G. M. Marion (1999), The role of carbonates in the evolution of early Martian oceans, Am. J. Sci., 299, 738761.
  • Mustard, J. F., and J. M. Sunshine (1995), Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites, Science, 267, 16231626.
  • Mustard, J. F., S. Erard, J.-P. Bibring, J. W. Head, S. Hurtrez, Y. Langevin, C. M. Pieters, and C. J. Sotin (1993), The surface of Syrtis Major: Composition of the volcanic substrate and mixing with altered dust and soil, J. Geophys. Res., 98, 33873400.
  • Oelkers, E. H. (2001), General kinetic description of multioxide silicate mineral and glass dissolution, Geochim. Cosmochim. Acta, 65, 37033719.
  • Oelkers, E. H., and S. R. Gislason (2001), The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11, Geochim. Cosmochim. Acta, 65, 36713681.
  • Petrovich, R. (1981), Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates, II. Deformation and dissolution of oxides and silicates in the laboratory and at the Earth's surface, Geochim. Cosmochim. Acta, 45, 16751686.
  • Poraj-Kosic, E. A. (1977), The structure of glass, J. Non Cryst. Solids, 25, 87128.
  • Ptacek, C., and D. Blowes (2000), Predicting sulfate-mineral solubility in concentrated waters, in Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance, edited by C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, pp. 513540, Mineral. Soc. of Am., Washington, D. C.
  • Rieder, R., T. E. Economou, H. Wanke, A. Turkevich, J. Crisp, J. Bruckner, G. Dreibus, and H. Y. McSween Jr. (1997), The chemical composition of Martian soil and rocks returned by the mobile alpha proton x-ray spectrometer: Preliminary results from the x-ray mode, Science, 278, 17711774.
  • Schott, J., and R. A. Berner (1983), X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering, Geochim. Cosmochim. Acta, 47, 22332240.
  • Schott, J., and R. A. Berner (1985), Dissolution mechanisms of pyroxenes and olivines during weathering, in The Chemistry of Weathering, edited by J. I. Drever, pp. 3554, Kluwer Acad., Norwell, Mass.
  • Settle, M. (1979), Formation and deposition of volcanic sulfate aerosols on Mars, J. Geophys. Res., 84, 83438354.
  • Singer, R. B., T. B. McCord, R. N. Clark, J. B. Adams, and R. L. Huguenin (1979), Mars surface composition from reflectance spectroscopy: A summary, J. Geophys. Res., 84, 84158426.
  • Soderblom, L. A. (1992), The composition and mineralogy of the Martian surface from spectroscopic observations: 3 μm to 50 μm. in Mars, edited by H. H. Kieffer et al., pp. 557593, Univ. of Ariz. Press, Tuscon.
  • Stillings, L. L., and S. L. Brantley (1995), Feldspar dissolution at 25°C and pH 3: Reaction stoichiometry and the effect of cations, Geochim. Cosmochim. Acta, 59, 14831496.
  • Stumm, W., and J. J. Morgan (1996), Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, John Wiley, New York.
  • Toulmin, P., A. K. Baird, B. C. Clark, K. Keil, H. J. Rose, R. P. Christian, H. P. Evans, and W. C. Kelliher (1977), Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res., 82, 46254634.
  • Wänke, H., J. Bruckner, G. Dreibus, R. Rieder, and I. Ryabchikov (2001), Chemical composition of rocks at the Pathfinder site, Space Sci. Rev., 96, 317330.
  • White, A. F. (1990), Heterogeneous electrochemical reactions associated with oxidation of ferrous oxide and silicate surfaces, in Mineral-Water Interface Geochemistry, edited by A. F. White, and M. F. Hochella, pp. 467509, Mineral. Soc. of Am., Washington, D. C.
  • Wyatt, M. B., and H. Y. McSween (2002), Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars, Nature, 417, 263266.