Adaptive tracking of narrowband HF channel response



[1] Estimation of channel impulse response constitutes a first step in computation of scattering function, channel equalization, elimination of multipath, and optimum detection and identification of transmitted signals through the HF channel. Due to spatial and temporal variations, HF channel impulse response has to be estimated adaptively. Based on developed state-space and measurement models, an adaptive Kalman filter is proposed to track the HF channel variation in time. Robust methods of initialization and adaptively adjusting the noise covariance in the system dynamics are proposed. In simulated examples under good, moderate and poor ionospheric conditions, it is observed that the adaptive Kalman filter based channel estimator provides reliable channel estimates and can track the variation of the channel in time with high accuracy.