SEARCH

SEARCH BY CITATION

References

  • Alpert, B., L. Greengard, and T. Hagstrom (2000), Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM J. Numer. Anal., 37(4), 11381164.
  • Berenger, J. P. (1994), A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185200.
  • Bernardi, P., M. Cavagnaro, P. D'Atanasio, E. Di Palma, S. Pisa, and E. Piuzzi (2002), FDTD, multiple-region/FDTD, ray-tracing/FDTD: A comparison on their applicability for human exposure evaluation, Int. J. Numer. Modell. Electron. Netw. Devices Fields, 15(5–6), 579593.
  • Chew, W. C. (1995), Waves and Fields in Inhomogeneous Media, IEEE Press, New York.
  • Chew, W. C., and W. H. Weedon (1994), A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microw. Opt. Technol. Lett., 7(13), 599604.
  • Chew, W. C., J. M. Jin, and E. Michielssen (1997), Complex coordinate stretching as a generalized absorbing boundary condition, Microw. Opt. Technol. Lett., 15(6), 363369.
  • Coifman, R., V. Rokhlin, and S. Wandzura (1993), The fast multipole method for the wave equation: A pedestrian prescription, IEEE Antennas Propagat. Mag., 35(3), 712.
  • De Moerloose, J., and D. De Zutter (1993), Surface integral representation radiation boundary condition for the FDTD method, IEEE Trans. Antennas Propag., 41(7), 890896.
  • Djordjevic, A. R., T. K. Sarkar, and T. Roy (1995), Finite-difference solution of scattering (TE case) using exact mesh termination, Microw. Opt. Technol. Lett., 10(1), 5659.
  • Engquist, B., and A. Majda (1977), Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31(139), 629651.
  • Givoli, D., and D. Cohen (1995), Nonreflecting boundary conditions based on Kirchhoff-type formulae, J. Comput. Phys., 117(1), 102113.
  • Grote, M. J., and J. B. Keller (1998), Nonreflecting boundary conditions for Maxwell's equations, J. Comput. Phys., 139(2), 327342.
  • Grote, M. J., and J. B. Keller (2000), Exact nonreflecting boundary condition for elastic waves, SIAM J. Appl. Math., 60, 803819.
  • Hairer, E., C. Lubich, and M. Schlichte (1985), Fast numerical solution of nonlinear Volterra convolution equations, SIAM J. Sci. Statist. Comput., 6(3), 532541.
  • Higdon, R. L. (1987), Numerical absorbing boundary conditions for the wave equation, Math. Comput., 49(179), 6590.
  • Holtzman, R., and R. Kastner (2001), The time-domain discrete Green's function method (GFM) characterizing the FDTD grid boundary, IEEE Trans. Antennas Propag., 49, 10791093.
  • Johnson, J. M., and Y. Rahmat-Samii (1997), MR/FDTD: A multiple-region finite-difference-time-domain method, Microw. Opt. Technol. Lett., 14(2), 101105.
  • Keller, J. B., and D. Givoli (1989), Exact non-reflecting boundary conditions, J. Comput. Phys., 82(1989), 172192.
  • Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan (1984), A transmitting boundary for transient wave analyses, Sci. Sinica, Ser. A, XXVII, 10631076.
  • Lu, M., J. Wang, A. A. Ergin, and E. Michielssen (2000), Fast evaluation of two-dimensional transient wave fields, J. Comput. Phys., 158(2), 161185.
  • Lu, M., B. Shanker, and E. Michielssen (2004a), Elimination of spurious solutions associated with exact transparent boundary conditions in FDTD solvers, IEEE Antennas Wireless Propagat. Lett., 3, 5962.
  • Lu, M., K. Yegin, B. Shanker, and E. Michielssen (2004b), Fast time domain integral equation solvers for analyzing two-dimensional scattering phenomena: Part I. Temporal acceleration, Electromagnetics, in press.
  • Lubich, C., and A. Schadle (2002), Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput., 24(1), 161182.
  • Mur, G. (1981), Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations, IEEE Trans. Electromagn. Compat., 23(4), 377382.
  • Oliver, J. C. (1992), On the synthesis of exact free space absorbing boundary conditions for the finite-difference-time-domain method, IEEE Trans. Antennas Propag., 40(4), 456460.
  • Song, J. M., C. C. Lu, and W. C. Chew (1997), MLFMA for electromagnetic scattering by large complex objects, IEEE Trans. Antennas Propag., 45, 14881493.
  • Taflove, A. (1995), Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, Mass.
  • Ting, L., and M. J. Miksis (1986), Exact boundary conditions for scattering problems, J. Acoust. Soc. Am., 80(6), 18251827.
  • Wu, X., and O. M. Ramahi (2002), Application of the concurrent complementary operators method to numerically derived absorbing boundary conditions, Microw. Opt. Technol. Lett., 32(4), 272275.
  • Yee, K. S. (1966), Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302307.
  • Ziolkowski, R. W., N. K. Madsen, and R. C. Carpenter (1983), Three-dimensional computer modeling of electromagnetic fields: A global lookback lattice truncation scheme, J. Comput. Phys., 50, 360408.