SEARCH

SEARCH BY CITATION

References

  • Arnold, V. I. (1978), Mathematical Methods of Classical Mechanics, Springer-Verlag, New York.
  • Born, M., and E. Wolf (1964), Principles of Optics, Pergamon, New York.
  • Egorov, Y. V. (1985), Lectures on Partial Differential Equations: Additional Chapters (in Russian), Moscow State Univ. Press, Moscow.
  • Egorov, Y. V., A. I. Komech, and M. A. Shubin (1999), Elements of the Modern Theory of Partial Differential Equations, Springer-Verlag, New York.
  • Eshleman, V. R., D. O. Muhleman, P. D. Nicholson, and P. G. Steffes (1980), Comment on absorbing regions in the atmosphere of Venus as measured by radio occultation, Icarus, 44, 793803.
  • Gorbunov, M. E. (2002a), Canonical transform method for processing radio occultation data in the lower troposphere, Radio Sci., 37(5), 1076, doi:10.1029/2000RS002592.
  • Gorbunov, M. E. (2002b), Radio-holographic analysis of Microlab-1 radio occultation data in the lower troposphere, J. Geophys. Res., 107(D12), 4156, doi:10.1029/2001JD000889.
  • Gorbunov, M. E. (2003), An asymptotic method of modeling radio occultations, J. Atmos. Sol. Terr. Phys., 65, 13611367.
  • Gorbunov, M. E., and A. S. Gurvich (1998a), Microlab-1 experiment: Multipath effects in the lower troposphere, J. Geophys. Res., 103, 13,81913,826.
  • Gorbunov, M. E., and A. S. Gurvich (1998b), Algorithms of inversion of Microlab-1 satellite data including effects of multipath propagation, Int. J. Remote Sens., 19, 22832300.
  • Gorbunov, M. E., and K. B. Lauritsen (2002), Canonical transform methods for radio occultation data, Sci. Rep. 02-10, Dan. Meteorol. Inst., Copenhagen. (Available as http://www.dmi.dk/dmi/Sr02-10.pdf).
  • Hörmander, L. (1985a), The Analysis of Linear Partial Differential Operators, vol. III, Pseudo-Differential Operators, Springer-Verlag, New York.
  • Hörmander, L. (1985b), The Analysis of Linear Partial Differential Operators, vol. IV, Fourier Integral Operators, Springer-Verlag, New York.
  • Igarashi, K., A. Pavelyev, K. Hocke, D. Pavelyev, I. A. Kucherjavenkov, S. Matyugov, A. Zakharov, and O. Yakovlev (2000), Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data, Earth Planets Space, 52, 893899.
  • Jensen, A. S., M. S. Lohmann, H.-H. Benzon, and A. S. Nielsen (2003), Full spectrum inversion of radio occultation signals, Radio Sci., 38(3), 1040, doi:10.1029/2002RS002763.
  • Jensen, A. S., M. S. Lohmann, A. S. Nielsen, and H.-H. Benzon (2004), Geometrical optics phase matching of radio occultation signals, Radio Sci., 39, RS3009, doi:10.1029/2003RS002899.
  • Kravtsov, Y. A. and Y. I. Orlov (1990), Geometrical Optics of Inhomogeneous Media, Springer-Verlag, New York.
  • Kursinski, E. R., S. Syndergaard, D. Flittner, D. Feng, G. Hajj, B. Herman, D. Ward, and T. Yunck (2002), A microwave occultation observing system optimized to characterize atmospheric water, temperature and geopotential via absorption, J. Atmos. Oceanic Technol., 19, 18971914.
  • Lindal, G. F., J. R. Lyons, D. N. Sweetnam, V. R. Eshleman, and G. L. Tyler (1987), The atmosphere of Uranus: Results of radio occultation measurements with Voyager, J. Geophys. Res., 92, 14,98715,001.
  • Marouf, E. A., G. L. Tyler, and P. A. Rosen (1986), Profiling Saturn rings by radio occultation, Icarus, 68, 120166.
  • Martin, J. (1992), Simulation of wave propagation in random media: Theory and applications, in Wave Propagation in Random Media (Scintillations), edited by V. I. Tatarskii, A. Ishimaru, and V. U. Zavorotny, pp. 463486, Int. Soc. for Opt. Eng. and Inst. of Phys., Bellingham, Wash.
  • Maslov, V. P. (1965), Perturbation Theory and Asymptotic Methods (in Russian), Mir, Moscow.
  • Maslov, V. P., and M. V. Fedoriuk (1981), Semi-Classical Approximations in Quantum Mechanics, D. Reidel, Norwell, Mass.
  • Melbourne, W. G., E. S. Davis, C. B. Duncan, G. A. Hajj, K. R. Hardy, E. R. Kursinski, T. K. Meehan, and L. E. Young (1994), The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publ. 94-18.
  • Mishchenko, A. S., V. E. Shatalov, and B. Y. Sternin (1990), Lagrangian Manifolds and the Maslov Operator, Springer-Verlag, New York.
  • Mortensen, M. D., and P. Høeg (1998), Inversion of GPS occultation measurements using Fresnel diffraction theory, Geophys. Res. Lett., 25, 24412444.
  • Mortensen, M. D., R. P. Lifield, and E. R. Kursinski (1999), Vertical resolution approaching 100 m for GPS occultations of the Earth's atmosphere, Radio Sci., 36, 14751484.
  • Pavelyev, A. (1998), On the feasibility of radioholographic investigations of wave fields near the Earth's radio-shadow zone on the satellite-to-satellite path, J. Commun. Technol. Electron., 43, 875879.
  • Pavelyev, A., K. Igarashi, C. Reigber, K. Hocke, J. Wickert, G. Beyerle, S. Matyugov, A. Kucherjavenkov, D. Pavelyev, and O. Yakovlev (2002), First application of the radioholographic method to wave observations in the upper atmosphere, Radio Sci., 37(3), 1043, doi:10.1029/2000RS002501.
  • Sokolovskiy, S. V. (2000), Inversions of radio occultation amplitude data, Radio Sci., 35, 97105.
  • Sokolovskiy, S. V. (2001), Modeling and inverting radio occultation signals in the moist troposphere, Radio Sci., 36, 441458.
  • Vorob'ev, V. V., and T. G. Krasil'nikova (1994), Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Izv. Russ. Acad. Sci. Phys. Atmos. Oceanic Phys., Engl. Transl., 29, 602609.