SEARCH

SEARCH BY CITATION

References

  • Abe, K. (1979), Size of great earthquakes of 1837–1974 inferred from tsunami data, J. Geophys. Res., 84, 15611568.
  • Abe, K. (1994), Instrumental magnitudes of historical earthquakes, 1892–1898, Bull. Seismol. Soc. Am., 84, 415425.
  • Ando, M. (1975), Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan, Tectonophysics, 27, 119140.
  • Atwater, B. F., et al. (1995), Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone, Earthquake Spectra, 11, 118.
  • Atwater, B. F., et al. (2001), Grouted sediment slices show signs of earthquake shaking, Eos Trans. AGU, 82, 603, 608.
  • Bilek, S. L., and T. Lay (1999), Comparison of depth dependent fault zone properties in the Japan Trench and Middle America Trench, Pure Appl. Geophys., 154, 433456.
  • Byrne, D. E., D. M. Davis, and L. R. Sykes (1988), Loci and maximum size of thrust earthquakes and the mechanisms of the shallow region of subduction zones, Tectonics, 7, 833857.
  • Byrne, D. E., L. R. Sykes, and D. M. Davis (1992), Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone, J. Geophys. Res., 97, 449478.
  • Cadet, J. P., et al. (1987), Deep scientific dives in the Japan and Kuril trenches, Earth Planet. Sci. Lett., 83, 313328.
  • Cochrane, G. R., J. C. Moore, M. E. MacKay, and G. F. Moore (1994), Velocity-porosity model of the Oregon accretionary prism from seismic reflection and refraction data, J. Geophys. Res., 99, 70337043.
  • DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein (1990), Current plate motions, Geophys. J. Int., 101, 425478.
  • Fisher, M. A., E. R. Flueh, D. W. Sholl, T. Parsons, R. E. Wells, A. Trehu, U. ten Brink, and C. S. Weaver (1999), Geologic processes of accretion in the Cascadia subduction zone west of Washington State, Geodynamics, 27, 277288.
  • Fruehn, J., R. von Huene, and M. A. Fisher (1999), Accretion in the wake of terrane collision: The Neogene accretionary wedge off Kenai Peninsula, Alaska, Tectonics, 18, 263277.
  • Fryer, G. J., and P. Watts (2001), Motion of the Ugamak Slide, probable source of the tsunami of 1 April 1946, in Proceedings of the International Tsunami Symposium 2001, pp. 683694, NOAA Pac. Mar. Environ. Lab., Seattle, Wash.
  • Fryer, G. J., P. Watts, and L. F. Pratson (2004), Source of the great tsunami of 1 April 1946: A landslide in the upper Aleutian forearc, Mar. Geol., 203, 201208.
  • Fukao, Y. (1979), Tsunami earthquakes and subduction processes near deep-sea trenches, J. Geophys. Res., 84, 23032314.
  • Goldfinger, C., L. D. Kulm, L. C. McNeill, and P. Watts (2000), Superscale failure of the southern Oregon Cascadia margin, Pure Appl. Geophys., 157, 11891226.
  • Goldfinger, C., C. H. Nelson, and J. E. Johnson (2003), Holocene earthquake records from the Cascadia subduction zone and northern San Andreas Fault based on precise dating of offshore turbidites, Annu. Rev. Earth Planet. Sci., 31, 555577.
  • Grim, P. (1992), Dissemination of NOAA/EEZ multibeam bathymetric data, NOS, in 1991 Exclusive Economic Zone Symposium: Working Together in the Pacific EEZ Proceedings, edited by M. Lockwood, and B. A. McGregor, U.S. Geol. Surv. Circ., 1092, 102109.
  • Hampton, M. A., H. J. Lee, and J. Locat (1996), Submarine landslides, Rev. Geophys., 34, 3359.
  • Hyndman, R. D., and K. Wang (1993), Thermal constraints on the zone of major thrust earthquake failure: The Cascadia subduction zone, J. Geophys. Res., 98, 20392060.
  • Johnson, J. M., and K. Satake (1997), Estimation of seismic moment and slip distribution of the April 1, 1946 Aleutian tsunami earthquake, J. Geophys. Res., 102, 11,76511,774.
  • Kanamori, H., and M. Kikuchi (1993), The 1992 Nicaragua earthquake: A slow tsunami earthquake associated with subducted sediments, Nature, 361, 714716.
  • Karig, D. E. (1986), Physical properties and mechanical state of accreted sediments in the Nankai Trough, SW Japan, in Structural Fabrics in Deep Sea Drilling Project Cores from Forearcs, edited by J. C. Moore, Mem. Geol. Soc. Am., 166, 117133.
  • Karl, H. A., and R. Carlson (1996), Alaskan EEZ, in Geology of the United States' Seafloor: The View from GLORIA, edited by J. Gardner, M. E. Field, and D. C. Twichell, pp. 251254, Cambridge Univ. Press, New York.
  • Kayen, R. E., and H. Lee (1993), Slope stability in regions of seafloor gas hydrate, Beaufort Sea continental slope, in Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone, edited by W. C. Schwab, H. Lee, and D. C. Twichell, U.S. Geol. Surv. Bull., 2002, 97103.
  • Kopp, C., J. Fruehn, E. R. Flueh, C. Reichert, N. Kukowski, J. Bialas, and D. Klaeschen (2000), Structure of the Makran subduction zone from wide angle and reflection seismic data, Tectonophysics, 329, 171191.
  • Kukowski, N., T. Schillihorn, K. Huhn, U. von Rad, S. Husen, and E. R. Flueh (2001), Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan, Mar. Geol., 173, 119.
  • Kulm, L. D., et al. (1986), Oregon subduction zone: Venting, fauna, and carbonates, Science, 231, 561566.
  • Li, C., and A. L. Clark (1991), SeaMARCII study of a giant submarine slump on the northern Chile continental slope, Mar. Geotechnol, 10, 257268.
  • MacKay, M. E. (1995), Structural variation and landward vergence at the toe of the Oregon accretionary prism, Tectonics, 14, 13091320.
  • MacKay, M. E., G. F. Moore, G. R. Cochrane, J. C. Moore, and L. D. Kulm (1992), Landward vergence and oblique structural trends in the Oregon margin accretionary prism: Implications and effect on fluid flow, Earth Planet. Sci. Lett., 109, 477491.
  • McAdoo, B. G., D. L. Orange, E. Screaton, H. Lee, and R. Kayen (1997), Slope basins, headless canyons, and submarine palaeoseismology of the Cascadia accretionary complex, Basin Res., 9, 313324.
  • McAdoo, B. G., L. F. Pratson, and D. L. Orange (2000), Submarine landslide geomorphology, US continental slope, Mar. Geol., 169, 103136.
  • McCaffrey, R., and C. Goldfinger (1995), Forearc deformation and great subduction earthquakes: Implications for Cascadia offshore earthquake potential, Science, 267, 856859.
  • Moore, G. F., et al. (2001), Data report: Structural setting of the Leg 190 Muroto transect, Proc. Ocean Drill. Program Initial Rep.,190 [CD-ROM].
  • Moore, J. C., G. F. Moore, G. R. Cochrane, and H. J. Tobin (1995), Negative-polarity reflections along faults of the Oregon accretionary prism; indicators of overpressuring, J. Geophys. Res., 100, 12,89512,906.
  • Obermeier, S. F., and S. E. Dickenson (2000), Liquefaction evidence for the strength of ground motions resulting from late Holocene Cascadia subduction earthquakes with emphasis on the event of 1700 AS, Bull. Seismol. Soc. Am., 90, 876896.
  • O'Leary, D. W. (1993), Submarine mass movement, a formative process of passive continental margins: The Munson-Nygren landslide complex and the Southeast New England landslide complex, in Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone, edited by W. C. Schwab, H. Lee, and D. C. Twichell, U.S. Geol. Surv. Bull., 2002, 97103.
  • Pelayo, A. M., and D. A. Wiens (1992), Tsunami earthquakes: Slow thrust-faulting events in the accretionary wedge, J. Geophys. Res., 97, 15,32115,337.
  • Polet, J., and H. Kanamori (2000), Shallow subduction zone earthquakes and their tsunamigenic potential, Geophys. J. Int., 142, 684702.
  • Ranero, C. R., R. von Huene, E. Flueh, M. Duarte, D. Baca, and K. McIntosh (2000), A cross section of the convergent Pacific margin of Nicaragua, Tectonics, 19, 335357.
  • Satake, K. (1994), Mechanism of the 1992 Nicaragua tsunami earthquake, Geophys. Res. Lett., 21, 25192522.
  • Satake, K., K. Shimazaki, Y. Tsuji, and K. Ueda (1996), Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700, Nature, 379, 246249.
  • Seno, T., S. Stein, and A. E. Gripp (1993), A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data, J. Geophys. Res., 98, 17,94117,948.
  • Tanioka, Y., and L. J. Ruff (1997), Source time functions, Seismol. Res. Lett., 68(3), 386400.
  • Tanioka, Y., and K. Satake (1996), Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling, Geophys. Res. Lett., 23, 15491552.
  • von Huene, R., and R. Culotta (1989), Tectonic erosion at the front of the Japan trench convergent margin, Tectonophysics, 160, 7590.
  • von Huene, R., D. Klaeschen, B. Cropp, and J. Miller (1994), Tectonic structure across the accretionary and erosional parts of the Japan Trench margin, J. Geophys. Res., 99, 22,34922,361.
  • von Rad, U., and H. Doose (Eds.) (1998), MAKRAN II, the Makran accretionary wedge off Pakistan: Tectonic evolution and fluid migration, RV Sonne cruise SO 130, report, Bundesanst. für Geowiss. und Rohstoffe BGR, Hannover, Germany.
  • Wang, K. (2000), Stress-strain paradox, plate coupling, and forearc seismicity at the Cascadia and Nankai subduction zones, Tectonophysics, 319, 321.
  • Yamazaki, T., and Y. Okamura (1989), Subducting seamounts and deformation of overriding forearc wedges around Japan, Tectonophysics, 160, 207229.