SEARCH

SEARCH BY CITATION

References

  • Allard, D. (1993), Connexité des ensembles aléatoires: Application à la simulation de réservoirs pétroliers hétérogènes, Ph.D. thesis, Ecole Natl. Supér. des Mines, Paris.
  • Bardossy, A., and E. J. Plate (1992), Space-time model of daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 12471259.
  • Doneaud, A., P. L. Smith, A. S. Dennis, and S. Sengupta (1981), A simple method for estimating convective rain volume over an area, Water Resour. Res., 17(6), 16761682.
  • Freulon, X. (1992), Conditionnement du modèle Gaussien par des contraintes ou des randomisées, Ph.D. thesis, Ecole Natl. Supér. des Mines, Paris.
  • Galli, A., and H. Gao (2001), Rate of convergence of the Gibbs sampler in the Gaussian case, Math. Geol., 33(6), 653677.
  • Gelfand, A. E., and E. E. M. Smith (1990), Sampling base approaches to calculating marginal densities, J. Am. Stat. Assoc., 85, 398409.
  • Geman, S., and D. Geman (1984), Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intel., 6, 721741.
  • Gleick, P. H. (1987), Regional hydrologic consequences of increases in atmospheric CO2 and other trace gases, Clim. Change, 10, 137161.
  • Grotch, S. L., and M. C. MacCracken (1991), The use of general circulation models to predict regional climate change, J. Clim., 4, 286303.
  • Guillot, G. (1999), Approximation of Sahelian rainfall fields with meta-Gaussian random functions: 1. Model definition and methodology, Stochast. Environ. Res. Risk Assess., 13, 100112.
  • Guillot, G., and T. Lebel (1999a), Approximation of Sahelian rainfall fields with meta-Gaussian random functions: 2. Parameter estimation and comparison to data, Stochast. Environ. Res. Risk Assess., 13, 113130.
  • Guillot, G., and T. Lebel (1999b), Disaggregation of Sahelian mesoscale convective system rain fields: Further developments and validation, J. Geophys. Res., 104(D24), 31,53331,551.
  • Harms, A. A., and T. H. Campbell (1967), An extension to the Thomas-Fiering model for the sequential generation of streamflow, Water Resour. Res., 3(3), 653661.
  • Hostetler, S. W. (1994), Hydrologic and atmospheric models: The (continuing) problem of discordant scales, Clim. Change, 27, 345350.
  • Journel, A. G. and C. J. Huijbregts (1978), Mining Geostatistics, 600 pp., Academic, San Diego, Calif.
  • Karl, T. R., W. C. Wang, M. E. Schlesinger, R. W. Knight, and D. Portman (1990), A method of relating general circulation model simulated climate to the observed local climate: I. Seasonal statistics, J. Clim., 3, 10531079.
  • Kedem, B., and H. Pavlopoulos (1991), On the threshold method for rainfall estimation: Choosing the optimal threshold level, J. Am. Stat. Assoc., 86(415), 626633.
  • Lantuéjoul, C. (1994), Non conditional simulation of stationary isotropic multi-Gaussian random functions, in Geostatistical Simulations, edited by P. A. Dowd, and M. Armstrong, pp. 147177, Kluwer Acad., Norwell, Mass.
  • Lantuéjoul, C. (1997), Iterative algorithms for conditional simulation, in Geostatistical Wollongong'96, vol. 1, edited by E. Y. Bafi, and N. A. Schofield, pp. 2740, Kluwer Acad., Norwell, Mass.
  • Le Barbé, L., T. Lebel, and D. Tapsoba (2002), Rainfall variability in west Africa during the years 1950–1990, J. Clim., 15(2), 187202.
  • Lebel, T., F. Delclaux, L. Le Barbé, and J. Polcher (2000), From GCM scales to hydrological scales: Rainfall variability in west Africa, Stochast. Environ. Res. Risk Assess., 14, 275295.
  • Matheron, G. (1973), The intrinsic random functions and their applications, Adv. Appl. Probab., 5, 211222.
  • Mejia, J. M., and J. Rousselle (1976), Disaggregation models in hydrology revisited, Water Resour. Res., 12(2), 18561866.
  • Onibon, H. (2001), Simulation conditionnée des champs de pluie au Sahel: Application de l'algorithme de Gibbs, Ph.D. thesis, Inst. Natl. Polytech. de Grenoble, Grenoble, France.
  • Onof, C., N. G. Mackay, L. Oh, and H. S. Wheater (1998), An improved rainfall disaggregation technique for general circulation models, J. Geophys. Res., 103(D16), 19,57719,586.
  • Perica, S., and E. Foufoula-Georgiou (1996), A model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions, J. Geophys. Res., 101(D21), 26,34726,361.
  • Perrault, L., J. Bernier, B. Bobbée, and E. Parent (2000), Bayesian change-point analysis in hydro-meteorological time series: 1. The normal model revisited, J. Hydrol., 235, 221241.
  • Rind, D., C. Rosenzweig, and R. Goldberg (1992), Modelling the hydrological cycle in assessments of climate change, Nature, 358, 119122.
  • Ritter, C., and M. A. Tanner (1992), Facilitating the Gibbs sampler: The Gibbs stopper and the griddy Gibbs samplers, J. Am. Stat. Assoc., 87, 861868.
  • Roberts, G. O. (1992), Convergence diagnostic of the Gibbs sampler, in Bayesian Statistics 4, edited by J. M. Bernardo et al., pp. 775782, Oxford Univ. Press, New York.
  • Sivapalan, M., and R. A. Woods (1995), Evaluation of the effects of general circulation models' subgrid variability and patchiness of rainfall and soil moisture on land surface water balance fluxes, in Scale Issues in Hydrological Modeling, edited by J. D. Kalma, and M. Sivapalan, pp. 453473, John Wiley, Hoboken, N. J.
  • Stedinger, J. R., D. Pei, and T. A. Cohn (1985), A condensed disaggregation model for incorporating parameter uncertainty into monthly reservoir simulations, Water Resour. Res., 21(5), 665675.
  • Von Neuman, J. (1951), Various techniques used in connection with random digits, NBS Appl. Math. Ser., 2, 3638.
  • Wigley, T. M. L., P. D. Jones, K. R. Briffa, and G. Smith (1990), Obtaining sub-grid-scale information from coarse-resolution general circulation model output, J. Geophys. Res., 95(D2), 19431953.
  • Wilby, R.-L. (1999), A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado, J. Hydrol., 225, 6791.
  • Wilks, D. S. (1989), Conditioning stochastic daily precipitation models on total monthly precipitation, Water Resour. Res., 25(6), 14291439.
  • Wilson, L.-L., D.-P. Lettenmaier, and E. F. Wood (1991), Simulation of precipitation in the Pacific Northwest using a weather classification scheme, Surv. Geophys., 12, 127142.