SEARCH

SEARCH BY CITATION

References

  • Allen, P. M., J. G. Arnold, and B. W. Byars, Downstream channel geometry for use of in planning-level models, Water Resour. Bull., 30(4), 663671, 1994.
  • Blench, T., Regime theory for self-formed sediment bearing channels, Trans. Am. Soc. Civil Eng., 117, 383408, 1952.
  • Blench, T., Coordination in mobile-bed hydraulics, J. Hydraul. Div. Am. Soc. Civ. Eng., 95(HY6), 18711988, 1969.
  • Bray, R. D., Regime equations for gravel-bed rivers, in Gravel-Bed Rivers, edited by R. D. Hey, J. C. Bathurst, and C. Thorne, pp. 517544, John Wiley, Hoboken, N. J., 1982.
  • Brebner, A., and K. C. Wilson, Derivation of the regime equations from relationships for pressurized flow by use of the principle of energy-degradation rate, Proc. Inst. Civ. Eng., 36, 4762, 1967.
  • Chang, H. H., Geometry of gravel stream, J. Hydraul. Div. Am. Soc. Civ. Eng., 106(HY9), 14431456, 1980.
  • Chang, H. H., Fluvial Processes in River Engineering, John Wiley, Hoboken, N. J., 1988.
  • Cheema, M. N., M. A. Marino, and J. J. DeVries, Stable width of an alluvial channel, J. Irrig. Drain. Eng., 123(1), 5561, 1997.
  • Chong, S. E., The width, depth and velocity of Sungei Kimla, Perak, Geographica, 6, 6372, 1970.
  • Davies, T. R. H., and A. J. Sutherland, Extremal hypotheses for river behavior, Water Resour. Res., 19, 141148, 1983.
  • Deng, Z., and K. Zhang, Morphologic equations based on the principle of maximum entropy, Int. J. Sediment. Res., 9(1), 3146, 1994.
  • Dou, G. R., Hydraulic geometry of plain alluvial rivers and tidal river mouth (in Chinese), J. Hydraul. Eng., 2, 113, 1964.
  • Dury, G. H., Discharge prediction, present and former, from channel dimensions, J. Hydrol., 30, 219245, 1976.
  • Engelund, F., and E. Hansen, A Monograph on Sediment Transport in Alluvial Streams, Teknisk, Copenhagen, 1967.
  • Howard, A. D., Thresholds in river regimes, in Thresholds in Geomorphology, edited by D. R. Coates, and J. D. Vitek, pp. 227258, Allen and Unwin, Concord, Mass., 1980.
  • Huang, H. W., and G. C. Nanson, Hydraulic geometry and maximum flow efficiency as products of the principle of least action, Earth Surf. Processes Landforms, 25, 116, 2000.
  • Jaynes, E. T., Information theory and statistical mechanics, I, Phys. Rev., 106, 620630, 1957.
  • Klein, M., Drainage area and the variation of channel geometry downstream, Earth Surf. Processes Landforms, 6, 589593, 1981.
  • Knighton, A. D., Variation in width-discharge relation and some implications for hydraulic geometry, Geol. Soc. Am. Bull., 85, 10691076, 1974.
  • Knighton, A. D., Variations in at-a-station hydraulic geometry, Am. J. Sci., 275, 186218, 1975.
  • Knighton, A. D., Alternative derivation of the minimum variance hypothesis, Ecolog. Soc. Am. Bull., 83, 38133822, 1977.
  • Knighton, A. D., River channel adjustment—The downstream dimension, in River Channels: Environment and Process, edited by K. S. Richards, pp. 95128, Blackwell, Malden, Mass., 1987.
  • Knighton, A. D., Fluvial Forms and Processes: A New Perspective, Edward Arnold, London, 1998.
  • Kolberg, F. J., and A. D. Howard, Active channel geometry and discharge relations of U. S. piedmont and midwestern streams: The variable exponent model revisited, Water Resour. Res., 31, 23532365, 1995.
  • Lane, E. W., Design of stable channels, Trans. Am. Soc. Civ. Eng., 120, 12341260, 1955.
  • Langbein, W. B., Geometry of river channels, J. Hydraul. Div. Am. Soc. Civ. Eng., 90(HY2), 301311, 1964.
  • Leopold, L. B., and T. J. Maddock, Hydraulic geometry of stream channels and some physiographic implications, U.S. Geol. Surv. Prof. Pap., 252, 55 pp., 1953.
  • Leopold, L. B., and W. B. Langbein, The concept of entropy in landscape evolution, U.S. Geol. Survey Prof. Pap., 500-A, 1962.
  • Leopold, L. B., and L. B. Wolman, River channel patterns: Braided, meandering and straight, U.S. Geol. Surv. Prof. Pap., 282-B, 1990.
  • Li, R. M., Mathematical modeling of response from small watershed, Ph.D. dissertation, 212 pp., Colo. State Univ., Fort Collins, 1974.
  • Osterkamp, W. R., and E. R. Hedman, Perennial-streamflow characteristics related to channel geometry and sediment in Missouri River basins, U.S. Geol. Surv. Prof. Pap., 1242, 37 pp., 1982.
  • Park, C. C., World-wide variations in hydraulic geometry exponents of stream channels: An analysis and some observations, J. Hydrol., 33, 133146, 1977.
  • Parker, G., Self-formed rivers with equilibrium banks and mobile bed: Part II. The gravel river, J. Fluid Mech., 89(1), 127148, 1978.
  • Parker, G., Hydraulic geometry of active gravel rivers, J. Hydraul. Div. Am. Soc. Civ. Eng., 105(HY9), 11851201, 1979.
  • Phillips, P. J., and J. M. Harlin, Spatial dependency of hydraulic geometry exponents in a subalpine stream, J. Hydrol., 71, 277283, 1984.
  • Ramette, M., A theoretical approach on fluvial processes, paper presented at International Symposium on River Sedimentation, Chin. Acad. of Hydraul. Eng., Beijing, 1980.
  • Rhoads, B. L., A continuously varying parameter model of downstream hydraulic geometry, Water Resour. Res., 27, 18651872, 1991.
  • Rhodes, D. D., World wide variations in hydraulic geometry exponents of stream channels: An analysis and some observations—Comments, J. Hydrol., 33, 133146, 1978.
  • Richards, K. S., Complex width-discharge relations in natural river sections, Geol. Soc. Am. Bull., 87, 199206, 1976.
  • Richards, K. S., Rivers: Form and Process in Alluvial Channels, Metheun, London, 1982.
  • Rodriguez-Iturbe, I., A. Rinaldo, R. Rigon, R. L. Bras, A. Marani, and E. J. Ijjasz-Vasquez, Energy dissipation, runoff production and the three dimensional structure of river basins, Water Resour. Res., 28, 10951103, 1992.
  • Smith, T. R., A derivation of the hydraulic geometry of steady-state channels from conservation principles and sediment transport laws, J. Geol., 82, 98104, 1974.
  • Stall, J. B., and Y. S. Fok, Hydraulic geometry of Illinois rivers, Water Resour. Res. Cent. Rep. 15, Univ. of Ill., Urbana, July 1968.
  • Stall, J. B., and C. T. Yang, Hydraulic geometry of 12 selected stream systems of the United States, WRC Res. Rep., 32, 1970.
  • Stebbings, J., The shape of self-formed model alluvial channels, Proc. Inst. Civ. Eng., 25, 485510, 1963.
  • White, W. R., R. Bettess, and E. Paris, Analytical approach to river regime, J. Hydraul. Div. Am. Soc. Civ. Eng., 108(HY10), 11791193, 1982.
  • Williams, G. P., Flume experiments on the transport of a coarse sand, U.S. Geol. Surv. Prof. Pap., 562-B, 1967.
  • Williams, G. P., Hydraulic geometry of river cross-sections—Theory of minimum variance, U.S. Geol. Surv. Prof., 1029, 1978.
  • Wolman, M. G., The natural channel of Brandywine Creek, Pennsylvania, U.S. Geol. Surv. Prof., 271, 1955.
  • Wolman, M. G., and L. M. Brush, Factors controlling the size and shape of stream channels in coarse noncohesive sands, U.S. Geol. Surv. Prof. Pap., 282-G, 183210, 1961.
  • Yalin, M. S., and A. M. F. Da Silva, On the computation of equilibrium channels in cohesionless alluvium, J. Hydrosci. Hydraul. Eng., 15(2), 113, 1997.
  • Yalin, M. S., and A. M. F. Da Siva, Regime channels in cohesionless alluvium, J. Hydraul. Res., 37(6), 725742, 1999.
  • Yang, C. T., Unit stream power and sediment transport, J. Hydraul. Div. Am. Soc. Civ. Eng., 98(HY10), 18051826, 1972.
  • Yang, C. T., Dynamic adjustment of rivers, paper presented at 3rd International Symposium on River Sedimentation, Univ. of Miss., Jackson, Miss., 1986.
  • Yang, C. T., Sediment Transport Theory and Practice, McGraw-Hill, New York, 1996.
  • Yang, C. T., and C. C. S. Song, Theory of minimum energy and energy dissipation rate, in Encyclopedia of Fluid Mechanics, chap. 11, Gulf, Houston, Tex., 1986.
  • Yang, C. T., C. C. Song, and M. T. Woldenberg, Hydraulic geometry and minimum rate of energy dissipation, Water Resour. Res., 17, 877896, 1981.