SEARCH

SEARCH BY CITATION

References

  • Aki, K., and P. G. Richards (1980), Quantitative Seismology, W. H. Freeman, New York.
  • Anile, A. M., J. K. Hunter, P. Pantano, and G. Russo (1993), Ray Methods for Nonlinear Waves in Fluids and Plasmas, John Wiley, Hoboken, N. J.,
  • Arridge, S. (1999), Optical tomography in medical imaging, Inverse Probl., 15, R41R93.
  • Barenblatt, G. I. (1979), Similarity, Self-Similarity, and Intermediate Asymptotics, Consult. Bur., New York.
  • Barenblatt, G. I. (1996), Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge Univ. Press, New York.
  • Bear, J. (1972), Dynamics of Fluids in Porous Media, Dover, Mineola, N. Y.,
  • Bouche, D., F. Molinet, and R. Mittra (1997), Asymptotic Methods in Electromagnetics, Springer-Verlag, New York.
  • Buckley, S. E., and M. C. Leverett (1942), Mechanism of fluid displacement in sands, Trans. Am. Inst. Mech. Eng., 146, 107116.
  • Burgers, J. M. (1948), A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1, 171199.
  • Burgers, J. M. (1974), The Nonlinear Diffusion Equation, D. Reidel, Norwell, Mass.,
  • Chong, T. H., and L. Sirovich (1973), Nonlinear effects in steady supersonic dissipative gas-dynamics. Part 2: Three-dimensional axisymmetric flow, J. Fluid Mech., 58, 5363.
  • Clausnitzer, V., and J. W. Hopmans (2000), Pore-scale measurements of solute breakthrough using microfocus X-ray computed tomography, Water Resour. Res., 36, 20672079.
  • Clothier, B. E., J. H. Knight, and I. White (1981), Burgers' equation: Application to field constant-flux infiltration, Soil Sci., 132, 255261.
  • Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Wiley-Interscience, New York.
  • Crane, M. J., and M. J. Blunt (1999), Streamline-based simulation of solute transport, Water Resour. Res., 35, 30613078.
  • Crighton, D. G., and J. F. Scott (1979), Asymptotic solutions of model equations in nonlinear acoustics, Philos. Trans. R. Soc. London, Ser. A, 292, 101134.
  • Cuesta, C., C. J. van Duijn, and J. Hulshof (2000), Infiltration in porous media with dynamic capillary pressure: Traveling waves, Eur. J. Appl. Math., 11, 381397.
  • Datta-Gupta, A., and M. J. King (1995), A semianalytic approach to tracer flow modeling in heterogeneous permeable media, Adv. Water Resour., 18, 924.
  • Datta-Gupta, A., L. W. Lake, G. A. Pope, K. Sepehrnoori, and M. J. King (1991), High-resolution monotonic schemes for reservoir fluid flow simulation, In Situ, 15, 289317.
  • Datta-Gupta, A., S. Yoon, D. W. Vasco, and G. A. Pope (2002), Inverse modeling of partitioning interwell tracer tests: A streamline approach, Water Resour. Res., 38(6), 1079, doi:10.1029/2001WR000597.
  • de Marsily, G. (1986), Quantitative Hydrogeology, Academic, San Diego, Calif.,
  • Finsterle, S., and K. Pruess (1995), Solving the estimation-identification problem in two-phase flow modeling, Water Resour. Res., 31, 913924.
  • Gardner, C. S., and G. K. Morikawa (1960), Similarity in the asymptotic behavior of collision-free hydromagnetic waves and water waves, Rep. 90,9082, Courant Inst. of Math. Sci., New York.
  • Grant, M. A. (1977), Permeability reduction factors at Wairakei, paper presented at AICHE-ASME Heat Transfer Conference, Am. Inst. of Chem. Eng., Salt Lake City, Utah, Aug.
  • Grindrod, P. (1996), The Theory and Applications of Reaction-Diffusion Equations, Clarendon, Oxford, UK.,
  • Hills, R. G., and A. W. Warrick (1993), Burgers' equation: A solution for soil water flow in a finite length, Water Resour. Res., 29, 11791184.
  • Jeffrey, A. (1989), Nonlinear Wave Motion, John Wiley, Hoboken, N. J.,
  • Jeffrey, A., and T. Kawahara (1982), Asymptotic Methods in Nonlinear Wave Theory, Pitman Adv., Boston, Mass.,
  • Jeffrey, A., and T. Taniuti (1964), Nonlinear Wave Propagation, Academic, San Diego, Calif.,
  • Karasaki, K., B. Freifeld, A. Cohen, K. Grossenbacher, P. Cook, and D. Vasco (2000), A multidisciplinary fractured rock characterization study at the Raymond field site, Raymond, California, J. Hydrol., 236, 1734.
  • King, M. J., and A. Datta-Gupta (1998), Streamline simulation: A current perspective, In Situ, 22, 91140.
  • Kline, M., and I. W. Kay (1979), Electromagnetic Theory and Geometrical Optics, Krieger, Melbourne, Fla.,
  • Korsunsky, S. (1997), Nonlinear Waves in Dispersive and Dissipative Systems With Coupled Fields, Addison-Wesley-Longman, Reading, Mass.,
  • Lighthill, M. J. (1956), Viscosity effects in sound waves of finite amplitude, in Surveys in Mechanics, edited by G. K. Batchelor, and R. M. Davies, Cambridge Univ. Press, New York.
  • Narasimhan, T. N., and P. A. Witherspoon (1976), An integrated finite difference method for analyzing fluid flow in porous media, Water Resour. Res., 12, 5764.
  • Peaceman, D. W. (1977), Fundamentals of Numerical Reservoir Simulation, Elsevier Sci., New York.
  • Pruess, K., C. Oldenburg, and G. Moridis (1999), TOUGH2 User's Guide, Version 2.0, LBNL Rep. 43134, Lawrence Berkeley Natl. Lab., Berkeley, Calif.,
  • Rudenko, O. V., and S. I. Soluyan (1977), Theoretical Foundations of Nonlinear Acoustics, Consult. Bur., New York.
  • Sachdev, P. L. (1987), Nonlinear Diffusive Waves, Cambridge Univ. Press, New York.
  • Sachdev, P. L. (2000), Self-Similarity and Beyond: Exact Solutions of Nonlinear Problems, Chapman and Hall, New York.
  • Scott, J. F. (1981), The long time asymptotics of solutions to the generalized Burgers equation, Proc. R. Soc. London, Ser. A, 373, 443456.
  • Sethian, J. A. (1999), Level Set and Fast Marching Methods, Cambridge Univ. Press, New York.
  • Taniuti, T., and K. Nishihara (1983), Nonlinear Waves, Pitman Adv., Boston, Mass.,
  • Taniuti, T., and C. C. Wei (1968), Reductive perturbation method in nonlinear wave propagation I, J. Phys. Soc. Jpn., 24, 941946.
  • Taylor, G. I. (1910), The conditions necessary for discontinuous motion in gases, Proc. R. Soc., Ser. A, A84, 371377.
  • van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc., 44, 892898.
  • Vasco, D. W., and A. Datta-Gupta (1999), Asymptotic solutions for solute transport: A formalism for tracer tomography, Water Resour. Res., 35, 116.
  • Vasco, D. W., and A. Datta-Gupta (2001), Asymptotics, saturation fronts, and high resolution reservoir characterization, Transp. Porous Media, 42, 315350.
  • Vasco, D. W., and S. Finsterle (2004), Numerical trajectory calculations for the efficient inversion of transient flow and tracer observations, Water Resour. Res., 40, W01507, doi:10.1029/2003WR002362.
  • Vasco, D., and K. Karasaki (2001), Inversion of pressure observations: An integral formulation, J. Hydrol., 253, 2740.
  • Vasco, D. W., S. Yoon, and A. Datta-Gupta (1999), Integrating dynamic data into high-resolution reservoir models using streamline-based analytic sensitivity coefficients, SPE J., 4, 389399.
  • Vasco, D. W., H. Keers, and K. Karasaki (2000), Estimation of reservoir properties using transient pressure data: An asymptotic approach, Water Resour. Res., 36, 34473465.
  • Vinegar, H. J., and S. L. Wellington (1987), Tomographic imaging of three-phase flow experiments, Rev. Sci. Instrum., 58, 96107.
  • Warrick, A. W., and G. W. Parkin (1995), Analytical solution for one-dimensional drainage: Burgers' equation and simplified forms, Water Resour. Res., 31, 28912894.
  • Whitham, G. B. (1974), Linear and Nonlinear Waves, John Wiley, Hoboken, N. J.,
  • Yeh, T.-C., and S. Liu (2000), Hydraulic tomography: Development of a new aquifer test method, Water Resour. Res., 36, 20952105.
  • Yoon, S., A. H. Malallah, A. Datta-Gupta, D. W. Vasco, and R. A. Behrens (2001), A multiscale approach to production-data integration using streamline models, SPE J., 6, 182192.