A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon



[1] In ungauged basins, predicting streamflows is a major challenge for hydrologists and water managers, with approaches needed to systematically generalize hydrometric properties from limited stream gauge data. Here we illustrate how a geologic/geomorphic framework can provide a basis for describing summer base flow and recession behavior at multiple scales for tributaries of the Willamette River in Oregon. We classified the basin into High Cascade and Western Cascade provinces based on the age of the underlying volcanic bedrock. Using long-term U.S. Geological Survey stream gauge records, we show that summer streamflow volumes, recession characteristics, and timing of response to winter recharge are all linearly related to the percent of High Cascade geology in the contributing area. This analysis illustrates how geology exerts a dominant control on flow regimes in this region and suggests that a geological framework provides a useful basis for interpreting and extrapolating hydrologic behavior.