SEARCH

SEARCH BY CITATION

References

  • Aselmann, I., and P. J. Crutzen (1989), Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality, and possible methane emissions, J. Atmos. Chem., 8, 307358.
  • Bell, G. D., M. S. Halpert, C. F. Ropelewski, V. E. Kousky, A. V. Douglas, R. C. Schnell, and M. E. Gelman (1999), Climate assessment for 1998, Bull. Am. Meteorol. Soc., 80, S1S48.
  • Bergamaschi, P., M. Bräunlich, T. Marik, and C. A. M. Brenninkmeijer (2000), Measurements of the carbon and hydrogen isotopes of atmospheric methane at Izaña, Tenerife: Seasonal cycles and synoptic-scale variations, J. Geophys. Res., 105, 14,53114,546.
  • Bingemer, H. G., and P. J. Crutzen (1987), The production of methane from solid wastes, J. Geophys. Res., 92, 21812187.
  • Brenninkmeijer, C. A. M., D. C. Lowe, M. R. Manning, R. J. Sparks, and P. F. J. van Velthoven (1995), The 13C, 14C, and 18O isotopic composition of CO, CH4, and CO2 in the higher southern latitudes lower stratosphere, J. Geophys. Res., 100, 26,16326,172.
  • Bruhwiler, L., P. Tans, and M. Ramonet (2000), A time-dependent assimilation and source retrieval technique for atmospheric tracers, in Inverse Methods in Global Biogeochemical Cycles, Geophys. Monogr. Ser., vol. 114, edited by P. Kasibhatla et al., pp. 265277, AGU, Washington, D. C.
  • Cantrell, C. A., R. E. Shetter, A. H. McDaniel, J. G. Calvert, J. A. Davidson, D. C. Lowe, S. C. Tyler, R. J. Cicerone, and J. P. Greenberg (1990), Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical, J. Geophys. Res., 95, 22,45522,462.
  • Chen, Y.-H. (2004), Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model, Ph.D. thesis, Mass. Inst. of Technol., Cambridge, Mass.
  • Cicerone, R. J., and R. S. Oremland (1988), Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 2, 299327.
  • Craig, H. (1953), The geochemistry of stable carbon isotopes, Geochim. Cosmochim. Acta, 3, 5392.
  • Curtis, S., R. Adler, G. Huffman, E. Nelkin, and D. Bolvin (2001), Evolution of tropical and extratropical precipitation anomalies during the 1997–1999 ENSO Cycle, Int. J. Climatol., 21, 961967.
  • Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M. Lang, and E. S. Kasischke (2001), Measurements of an anomalous global methane increase during 1998, Geophys. Res. Lett., 28, 499502.
  • Dlugokencky, E. J., S. Houweling, L. Bruhwiler, K. A. Masarie, P. M. Lang, J. B. Miller, and P. P. Tans (2003), Atmospheric methane levels off: Temporary pause or a new steady state? Geophys. Res. Lett., 30(19), 1993, doi:10.1029/2003GL017475.
  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, and P. J. Fraser (1991), Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13,03313,065.
  • Heimann, M., and S. Körner (2003), The Global Atmospheric Tracer Model TM3 model description and user's manual, technical report, Max-Planck-Inst. für Biogeochem., Jena, Germany.
  • Hein, R., P. J. Crutzen, and M. Heimann (1997), An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 11, 4376.
  • Houweling, S., T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann (1999), Inverse modeling of methane sources and sinks using the adjoint of a global transport model, J. Geophys. Res., 104, 26,13726,160.
  • Intergovernmental Panel on Climate Change (2001), Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
  • Kaminski, T., M. Heimann, and R. Giering (1999), A coarse grid three-dimensional inverse model of the atmospheric transport: 1. Adjoint model and Jacobian matrix, J. Geophys. Res., 104, 18,53518,553.
  • Kaplan, J. O. (2001), Wetlands at the Last Glacial Maximum: Distribution and methane emissions, Geophys. Res. Lett., 29, 610.
  • Lassey, K. R., D. C. Lowe, and M. R. Manning (2000), The trend in atmospheric methane δ13C and implications for isotopic constraints on the global methane budget, Global Biogeochem. Cycles, 14, 4149.
  • Lelieveld, J., P. J. Crutzen, and F. S. Dentener (1998), Changing concentration, lifetime, and climate forcing of atmospheric methane, Tellus, Ser. B, 50, 128150.
  • Levine, J. S., W. R. Coffer III, and J. P. Pinto (2000), Biomass burning, in Atmospheric Methane: Its Role in Global Environment, edited by M. A. K. Khalil, Springer-Verlag, New York.
  • Lowe, D. C., C. A. M. Brenninkmeijer, G. W. Brailsford, K. Lassey, A. J. Gomez, and E. G. Nisbet (1994), Concentration and 13C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources, J. Geophys. Res., 99, 16,91316,925.
  • Matthews, E., and I. Fung (1987), Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 6186.
  • Mikaloff Fletcher, S. E. M. (2003), Constraining methane flux estimates using observations of atmospheric methane and 13C/12C isotopic ratios in methane, Ph.D. thesis, Univ. of Colo., Boulder.
  • Mikaloff Fletcher, S. E., P. P. Tans, L. M. Bruhwiler, J. B. Miller, and M. Heimann (2004), CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes constraining CH4 source estimates with atmospheric observations of CH4 and 13C/12C isotopic ratios in CH4 in an inverse model, Global Biogeochem. Cycles, doi:10.1029/2004GB002223, in press.
  • Miller, J. B., K. A. Mack, R. Dissly, J. W. C. White, E. J. Dlugokencky, and P. P. Tans (2002), Development of analytical methods and measurements of 13C/12C in atmospheric CH4 from the NOAA/CMDL global air sampling network, J. Geophys. Res., 107(D13), 4178, doi:10.1029/2001JD000630.
  • National Oceanic and Atmospheric Administration, (2001), GLOBALVIEW-CH4: Cooperative Atmospheric Data Integration Project- Methane [CD-ROM], report, Clim. Monit. and Diag. Lab., Boulder, Colo. (Also available at ftp.cmdl.noaa.gov, Path: ccg/ch4/GLOBALVIEW).
  • Olivier, J. G. J., A. F. Bouwman, C. W. M. van der Maas, J. M. Berdowski, C. Veldt, J. P. J. Bloos, A. J. H. Visschedijk, P. J. Zandveld, and J. L. Haverlag (1996), Description of Edgar Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1 × 1 grid, report, Natl. Inst. of Public Health and the Environ., Bilthoven, Netherlands.
  • Petit, J. R., et al. (1999), Climate and atmospheric history of the past 42,0000 years from the Vostok ice core, Antarctica, Nature, 399, 429436.
  • Quay, P., J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky, and T. Brown (1999), The isotopic composition of atmospheric methane, Global Biogeochem. Cycles, 13, 445461.
  • Sanderson, M. G. (1996), Biomass of termites and their emissions of methane and carbon dioxide: A global database, Global Biogeochem. Cycles, 10, 543557.
  • Saueressig, G., J. N. Crowley, P. Bergamaschi, C. Brühl, C. A. M. Brenninkmeijer, and H. Fischer (2001), Carbon 13 and D kinetic isotope effects in the reactions of CH4 with O (1D) and OH: New laboratory measurements and their implications for the isotopic composition of stratospheric methane, J. Geophys. Res., 106, 23,12723,138.
  • Spivakovsky, C. M., et al. (2000), Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. Geophys. Res., 105, 89318980.
  • Tans, P. P. (1997), A note on isotopic ratios and the global atmospheric methane budget, Global. Biogeochem. Cycles, 11, 7781.
  • Tyler, S. C., P. M. Crill, and G. W. Brailsford (1994), 13C/12C fractionation of methane during oxidation in a temperate forested soil, Geochim. Cosmochim. Acta, 58, 16251633.
  • Walter, B. (1998), Development of a process-based model to derive methane emissions from natural wetlands for climate studies, Ph.D. thesis, Univ. Hamburg, Germany.
  • Warwick, N. J., S. Bekki, K. S. Law, E. G. Nisbet, and J. A. Pyle (2002), The impact of meteorology on the interannual growth rate of atmospheric methane, Geophys. Res. Lett., 29(20), 1947, doi:10.1029/2002GL015282.
  • Whiticar, M. (1993), Stable isotopes in global budgets, in Atmospheric Methane—Sources, Sinks, and Role in Environmental Change, NATO ASI Ser.: Global Environ. Change, vol. 1, edited by M. A. K. Khalil, Springer-Verlag, New York.