SEARCH

SEARCH BY CITATION

References

  • Aber, J., W. McDowell, K. Nadelhoffer, A. Magill, G. Berntson, M. Kamakea, S. McNulty, W. Currie, L. Rustad, and I. Fernandez (1998), Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited, BioScience, 48, 921934.
  • Anderson, J. M. (1991), The effects of climate change on decomposition processes in grassland and coniferous forests, Ecol. Appl., 1, 326347.
  • Berg, B., and O. Theander (1984), Dynamics of some nitrogen fractions in decomposing Scots pine needle litter, Pedobiologia, 27, 261267.
  • Bergh, J., R. E. McMurtrie, and S. Linder (1998), Climatic factors controlling the productivity of Norway spruce: A model-based analysis, For. Ecol. Manage., 110, 127139.
  • Bergh, J., S. Linder, T. Lundmark, and B. Elfving (1999), The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden, For. Ecol. Manage., 119, 5162.
  • Bonan, G. B., and K. van Cleve (1991), Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests, Can. J. For. Res., 22, 629639.
  • Bremer, D. J., J. M. Ham, and C. E. Owensby (1996), Effect of elevated atmospheric carbon dioxide and open top chambers on transpiration in tallgrass prairie, J. Environ. Qual., 25, 691701.
  • Cao, M., and F. I. Woodward (1998), Net primary ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change, Global Change Biol., 4, 185198.
  • Comins, H. N., and R. E. McMurtrie (1993), Long-term response of nutrient-limited forests to CO2-enrichment: Equilibrium behaviour of plant-soil models, Ecol. Appl., 3, 666681.
  • Cramer, W., and P. Canadell (2000), Future trajectories of global terrestrial carbon fluxes, GCTE News, 15, 3 pp.
  • Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7, 357373.
  • Dail, D. B., E. A. Davidson, and J. Chorover (2001), Rapid abiotic transformation of nitrate in an acid forest soil, Biogeochemistry, 54, 131146.
  • Del Grosso, S. J., W. J. Parton, A. R. Mosier, D. S. Ojima, A. E. Kulmala, and S. Phongpan (2000), General model for N2O and N2 gas emissions from soils due to denitrification, Global Biogeochem. Cycles, 14, 10451060.
  • Del Grosso, S. J., W. J. Parton, A. R. Mosier, M. D. Hartman, J. Brenner, D. S. Ojima, and D. S. Schimel (2001), Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model, in Modeling Carbon and Nitrogen Dynamics for Soil Management, pp. 303332, CRC Press, Boca Raton, Fla.
  • Del Grosso, S. J., D. S. Ojima, W. J. Parton, A. R. Mosier, G. A. Peterson, and D. S. Schimel (2002), Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model, Environ. Pollut., 116, S75S83.
  • Dewar, R. C. (1997), A simple model of light and water use evaluated for Pinus radiata, Tree Physiol., 17, 259265.
  • Dewar, R. C., B. E. Medlyn, and R. E. McMurtrie (1999), Acclimation of the respiration photosynthesis ratio to temperature: insights from a model, Global Change Biol., 5, 615622.
  • Dixon, R. K., S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler, and J. Wisniewski (1994), Carbon pools and flux of global forest ecosystems, Science, 263, 185190.
  • Eitzinger, J., W. J. Parton, and M. Hartman (2000), Improvement and validation of a daily soil temperature submodel for freezing/thawing periods, Soil Sci., 165, 525534.
  • Eliasson, P. E., R. E. McMurtrie, D. A. Pepper, M. Strömgren, S. Linder, and G. I. Ågren (2004), The response of heterotrophic CO2-flux to soil warming, Global Change Biol., 10, doi:10.1111/j.1365-2486.2004.00878.x.
  • Farquhar, G. D., and S. von Caemmerer (1982), Modelling of photosynthetic response to environmental conditions, in Physiological Plant Ecology II, Water Relation and Carbon Assimilation, Encycl. Plant Physiol., New Ser., vol. 12B, edited by O. L. Lange et al., pp. 549587, Springer-Verlag, New York.
  • Finzi, A. C., E. H. DeLucia, J. G. Hamilton, D. D. Richter, and W. H. Schlesinger (2002), The nitrogen budget of a pine forest under free-air CO2 enrichment, Oecologia, 132, 567578.
  • Friend, A. D., A. K. Stevens, R. G. Knox, and M. G. R. Cannell (1997), A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0), Ecol. Model., 95, 249287.
  • Gifford, R. M. (1992), Interaction of carbon dioxide with growth limiting environmental factors in vegetation productivity: Implications for the global carbon cycle, Adv. Bioclimatol., 1, 2458.
  • Gifford, R. M. (1994), The global carbon cycle: A viewpoint on the missing sink, Aust. J. Plant Physiol., 21, 115.
  • Gifford, R. M. (2003), Plant respiration in productivity models: Conceptualisation, representation and issues for global terrestrial carbon-cycle research, Funct. Plant Biol., 30, 171186.
  • Glassy, J. M., and S. W. Running (1994), Validating diurnal climatological logic of the MT-CLIM model across a climatic gradient in Oregon, Ecol. Appl., 4, 248257.
  • Hall, D. O., and J. M. O. Scurlock (1991), Climate change and productivity of natural grasslands, Ann. Bot., 67, 4955.
  • Halliday, J. C., K. R. Tate, R. E. McMurtrie, and N. A. Scott (2003), Mechanisms for changes in soil carbon storage with pasture to Pinus radiata land-use change, Global Change Biol., 9, 12941308.
  • Ham, J. M., C. E. Owensby, P. I. Coyne, and D. J. Bremer (1995), Fluxes of CO2 and water vapour from a prairie ecosystem exposed to ambient and elevated atmospheric CO2, Agric. For. Meteorol., 77, 7393.
  • Hamerlynck, E. P., C. A. McAllister, A. K. Knapp, J. M. Ham, and C. E. Owensby (1997), Photosynthetic gas exchange and water relation responses of three tallgrass prairie species to elevated carbon dioxide and moderate drought, Int. J. Plant Sci., 158, 608616.
  • Houghton, J. T., L. G. Meira Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris, and K. Maskell (Eds.) (1995), Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (Eds.) (2001), Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York.
  • Houghton, R. A., E. A. Davidson, and G. M. Woodwell (1998), Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance, Global Biogeochem. Cycles, 12, 2534.
  • Hungate, B. A., J. S. Dukes, M. R. Shaw, Y. Luo, and C. B. Field (2003), Nitrogen and climate change, Science, 302, 15121513.
  • Jarvis, P., and S. Linder (2000), Botany: Constraints to growth of boreal forests, Nature, 405, 904905.
  • Jastrow, J. D., R. M. Miller, and C. E. Owensby (2000), Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grassland, Plant Soil, 224, 8597.
  • Kelly, R. H., W. J. Parton, M. D. Hartman, L. K. Stretch, D. S. Ojima, and D. S. Schimel (2000), Intra-annual and interannual variability of ecosystem processes in shortgrass steppe, J. Geophys. Res., 105, 20,09320,100.
  • Kirschbaum, M. U. F. (2000), Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 48, 2151.
  • Knapp, A. K., E. P. Hamerlynck, and C. E. Owensby (1993), Photosynthetic and water relations responses to elevated CO2 in the C4 grass Andropogon geradii, Int. J. Plant Sci., 154, 459466.
  • Knapp, A. K., M. Cocke, E. P. Hamerlynck, and C. E. Owensby (1994), Effect of elevated CO2 on stomatal density and distribution in a C4 grass and a C3 forb under field conditions, Ann. Bot., 74, 595599.
  • Knapp, A. K., E. P. Hamerlynck, J. M. Ham, and C. E. Owensby (1996), Responses in stomatal conductance to elevated CO2 in 12 grassland species that differ in growth form, Vegetatio, 125, 3141.
  • Lieth, H. (1972), Modelling the primary productivity of the world, UNESCO, Paris, Nature Resour., 8, 510.
  • Luo, Y., et al. (2004), Progressive nitrogen limitation of ecosystem responses to rising atmospheric CO2, BioScience, 54, 731739.
  • McMurtrie, R. E. (1991), Relationship of forest productivity to nutrient and carbon supply—A modelling analysis, Tree Physiol., 9, 8799.
  • McMurtrie, R. E., and H. N. Comins (1996), The temporal response of forest ecosystems to doubled atmospheric CO2 concentration, Global Change Biol., 2, 4957.
  • McMurtrie, R. E., and Y. P. Wang (1993), Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures, Plant Cell Environ., 16, 113.
  • McMurtrie, R. E., D. A. Rook, and F. M. Kelliher (1990), Modelling the yield of Pinus radiata on a site limited by water and nitrogen, For. Ecol. Manage., 31, 381413.
  • McMurtrie, R. E., H. N. Comins, M. U. F. Kirschbaum, and Y.-P. Wang (1992), Modifying forest growth models to take account of effects of elevated CO2 concentrations, Aust. J. Bot., 40, 657677.
  • McMurtrie, R. E., B. E. Medlyn, and R. C. Dewar (2001), Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years, Tree Physiol., 21, 831839.
  • Medlyn, B. E., R. E. McMurtrie, R. C. Dewar, and M. P. Jeffreys (2000), Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO2 concentration, Can. J. For. Res., 30, 873888.
  • Medlyn, B. E., A. Rey, C. V. M. Barton, and M. Forstreuter (2001), Above-ground growth responses of forest trees to elevated atmospheric CO2 concentrations, in The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems: Report No. 3 of the IUFRO Task Force on Environmental Change, pp. 127146, CABI Pub., Wallingford, UK.
  • Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore, C. J. Vorosmarty, and A. L. Schloss (1993), Global climate change and terrestrial net primary production, Nature, 363, 234240.
  • Metherell, A. K., L. S. Harding, C. V. Cole, and W. J. Parton (1993), CENTURY Soil Organic Matter Model Environment: Technical documentation, agroecosystem version 4.0, Great Plains Syst. Res. Unit Tech. Rep. 4, USDA-ARS, Fort Collins, Colo.
  • Monteith, J. L. (1986), How do crops manipulate water supply and demand? Philos. Trans. R. Soc. London, Ser. A, 316, 245259.
  • Monteith, J. L., A. K. S. Huda, and D. Midya (1989), RESCAP: A resource capture model for sorghum and pearl millet, in Modelling the Growth and Development of Sorghum and Pearl Millet, edited by S. M. Virmani, H. L. S. Tandon, and G. Alagarswamy, pp. 3034, Res. Bull. 12, Int. Crops Res. Inst. for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
  • Morgan, J. A., D. R. Lecain, A. R. Mosier, and D. G. Milchunas (2001), Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of Colorado shortgrass steppe, Global Change Biol., 7, 451466.
  • Morgan, J. A., et al. (2004), Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2, Oecologia, 140, 1125.
  • Morison, J. I. L. (1993), Response of plants to CO2 under water limited conditions, Vegetatio, 104/105, 193209.
  • Mosier, A. R., W. J. Parton, D. W. Valentine, D. S. Ojima, D. S. Schimel, and J. A. Delgado (1996), CH4 and N2O fluxes in the Colorado shortgrass steppe: I. Impact of landscape and nitrogen addition, Global Biogeochem. Cycles, 10, 387399.
  • Mosier, A. R., W. J. Parton, D. W. Valentine, D. S. Ojima, D. S. Schimel, and O. Hienemeyer (1997), CH4 and NO4 fluxes in the Colorado shortgrass steppe: 2. Long-term impact of land use change, Global Biogeochem. Cycles, 11, 2942.
  • Mosier, A. R., J. A. Morgan, J. Y. King, D. LeCain, and D. G. Milchunas (2002), Soil-atmosphere exchange of CH4, CO2, NOx and N2O in Colorado shortgrass steppe under elevated CO2, Plant Soil, 240, 201211.
  • Nadelhoffer, K. J., B. A. Emmett, P. Gundersen, O. J. Kjønaas, C. J. Koopmans, P. Schleppi, A. Tietema, and R. F. Wright (1999), Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests, Nature, 398, 145148.
  • Oren, R., et al. (2001), Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere, Nature, 411, 469472.
  • Owensby, C. E., P. I. Coyne, J. M. Ham, L. M. Auen, and A. K. Knapp (1993), Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2, Ecol. Appl., 3, 644653.
  • Owensby, C. E., L. M. Auen, and P. I. Coyne (1994), Biomass production in a nitrogen-fertilized tallgrass prairie ecosystem exposed to ambient and elevated levels of CO2, Plant Soil, 165, 105113.
  • Owensby, C. E., J. M. Ham, A. K. Knapp, and L. M. Auen (1999), Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2, Global Change Biol., 5, 497506.
  • Parton, W. J., D. S. Schimel, C. V. Cole, and D. S. Ojima (1987), Analysis of factors controlling soil organic matter levels in Great Plains grasslands, Soil Sci. Soc. Am. J., 51, 11731179.
  • Parton, W. J., et al. (1993), Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide, Global Biogeochem. Cycles, 7, 785809.
  • Parton, W. J., D. S. Ojima, C. V. Cole, and D. S. Schimel (1994), A general model for soil organic matter dynamics: Sensitivity to litter chemistry, texture and management, in Quantitative Modeling of Soil Forming Processes, Spec. Publ. 39, pp. 147167, Soil Sci. Soc. of Am., Madison, Wis.
  • Parton, W. J., A. R. Mosier, D. S. Ojima, D. W. Valentine, D. S. Schimel, K. Weier, and K. E. Kulmala (1996), Generalized model for N2 and N2O production from nitrification and denitrification, Global Biogeochem. Cycles, 10, 401412.
  • Parton, W. J., M. Hartman, D. S. Ojima, and D. S. Schimel (1998), DAYCENT: Its land surface submodel: Description and testing, Global Planet. Change, 19, 3548.
  • Parton, W. J., E. A. Holland, S. J. Del Grosso, M. D. Hartman, R. E. Martin, A. R. Mosier, D. S. Ojima, and D. S. Schimel (2001), Generalized model for NOx and N2O emissions from soils, J. Geophys. Res., 106(D15), 17,40317,420.
  • Pearce, F. (1999), That sinking feeling, New Sci., 164, 2021.
  • Pendall, E., et al. (2003), Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland, Global Biogeochem. Cycles, 17(2), 1046, doi:10.1029/2001GB001821.
  • Pendall, E., A. R. Mosier, and J. A. Morgan (2004), Rhizodeposition stimulated by elevated CO2 in semiarid grassland, New Phytol., 162, 447458.
  • Peñuelas, J., and M. Estiarte (1997), Trends in plant carbon concentration and plant demand for N throughout this century, Oecologia, 109, 6973.
  • Rastetter, E. B., R. B. McKane, G. R. Shaver, and J. M. Melillo (1992), Changes in C-storage by terrestrial ecosystems—How C-N interactions restrict responses to CO2 and temperature, Water Air Soil Pollut., 64, 327344.
  • Running, S. W., R. R. Nemani, and R. D. Hungerford (1987), Extrapolation of synoptic meteorological data in mountainous terrain, and its use for simulating forest evapotranspiration, Can. J. For. Res., 17, 472483.
  • Rustad, L. E., J. L. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell, A. E. Hartley, J. H. C. Cornelissen, and J. Gurevitch (2001), A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming, Oecologia, 126, 543562.
  • Schimel, D. S. (1995), Terrestrial ecosystems and the carbon cycle, Global Change Biol., 1, 7791.
  • Schimel, D., I. G. Enting, M. Heimann, T. M. L. Wigley, D. Raynaud, D. Alves, and U. Siegenthaler (1995), CO2 and the carbon cycle, in Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, edited by J. T. Houghton et al., pp. 3571, Cambridge Univ. Press, New York.
  • Schimel, D. S., et al. (2001), Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems, Nature, 414, 169172.
  • Schlesinger, W. H., and J. Lichter (2001), Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2, Nature, 411, 466469.
  • Scholes, R. J. (1999), Will the terrestrial carbon sink saturate soon? IGBP Global Change Newsl., 37, 23.
  • Scholes, R. J., E. D. Schulze, L. F. Pitelka, and D. O. Hall (1999), Biochemistry of terrestrial ecosystems, in The Terrestrial Biosphere and Global Change: Implication for Natural and Managed Ecosystems, edited by B. H. Walker et al., pp. 271303, Cambridge Univ. Press, New York.
  • Shaver, G. R., et al. (2000), Global warming and terrestrial ecosystems: A conceptual framework for analysis, BioScience, 50, 871882.
  • Shaw, M. R., E. S. Zavaleta, N. R. Chiariello, E. E. Cleland, H. A. Mooney, and C. B. Field (2002), Grassland responses to global environmental changes suppressed by elevated CO2, Science, 298, 19871990.
  • Sims, P. L., J. S. Singh, and W. K. Lauenroth (1978), The structure and function of ten western North American grasslands: I. Abiotic and vegetational characteristics, J. Ecol., 66, 251285.
  • Strömgren, M., and S. Linder (2002), Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand, Global Change Biol., 8, 11951204.
  • Tanner, C. B., and T. R. Sinclair (1983), Efficient water use in crop production: Research or re-search? in Limitations to Efficient Water Use in Crop Production, edited by H. M. Taylor, W. R. Jordan, and T. R. Sinclair, pp. 127, Am. Soc. Agron., Madison, Wis.
  • Vitousek, P. M., et al. (2002), Towards an ecological understanding of biological nitrogen fixation, Biogeochemistry, 57/58, 145.
  • Walker, B. H., W. L. Steffen, and J. Langridge (1999), Interactive and integrated effects of global change on terrestrial ecosystems, in The Terrestrial Biosphere and Global Change: Implication for Natural and Managed Ecosystems, edited by B. H. Walker et al., pp. 329375, Cambridge Univ. Press, New York.
  • Waring, R. H., J. J. Landsberg, and M. Williams (1998), Net primary production of forests: A constant fraction of gross primary production? Tree Physiol., 18, 129134.
  • Williams, M. A., C. W. Rice, and C. E. Owensby (2000), Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years, Plant Soil, 227, 127137.
  • Williams, M. A., C. W. Rice, A. Omay, and C. Owensby (2004), Carbon and nitrogen pools in a tallgrass prairie soil under elevated carbon dioxide, Soil Sci. Soc. Am. J., 68, 148153.
  • Woodward, F. I., M. R. Lomas, and R. A. Betts (1998), Vegetation-climate feedbacks in a greenhouse world, Philos. Trans. R. Soc. London, Ser. B, 353, 2939.
  • Woodward, F. I., M. R. Lomas, and S. E. Lee (2001), Predicting the future production and distribution of global terrestrial vegetation, in Terrestrial Global Productivity, edited by B. Saugier, J. Roy, and H. A. Mooney, pp. 519539, Academic, San Diego, Calif.
  • Woodwell, G. M. (1990), The effect of global warming, in Global Warming: The Greenpeace Report, edited by J. Leggett, pp. 116132, Oxford Univ. Press, New York.
  • Wullschleger, S. D., R. B. Jackson, W. S. Currie, A. D. Friend, Y. Luo, F. Mouillot, Y. Pan, and G. Shao (2001), Below-ground processes in gap models for simulating forest response to global change, Clim. Change, 51, 449473.
  • Zak, D. R., K. S. Pregitzer, P. S. Curtis, J. A. Teeri, R. Fogel, and D. Randlett (1993), Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles, Plant Soil, 151, 105117.