SEARCH

SEARCH BY CITATION

References

  • Bartlett, K. B., P. M. Crill, D. I. Sebacher, R. C. Harriss, J. O. Wilson, and J. M. Melack (1988), Methane flux from the central Amazon floodplain, J. Geophys. Res., 93, 15711582.
  • Bastviken, D., J. Ejlertsson, and L. Tranvik (2002), Measurement of methane oxidation in lakes—A comparison of methods, Environ. Sci. Technol., 36, 33543361.
  • Bastviken, D., J. Ejlertsson, I. Sundh, and L. Tranvik (2003), Methane as a source of carbon and energy for lake pelagic food webs, Ecology, 84, 969981.
  • Boon, P. I., and A. Mitchell (1995), Methanogenesis in the sediments of an Australian freshwater wetland: Comparison with aerobic decay, and factors controlling methanogenesis, FEMS Microbiol. Ecol., 18, 175190.
  • Carpenter, S. R. (1983), Lake geometry: Implications for production and sediment accretion rates, J. Theor. Biol., 105, 273286.
  • Casper, P., S. C. Maberly, G. H. Hall, and B. J. Finlay (2000), Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere, Biogeochemistry, 49, 119.
  • Chanton, J. P., G. J. Whiting, J. D. Happell, and G. Gerard (1993), Contrasting rates and diurnal patterns of methane emissions from emergent aquatic macrophytes, Aquat. Bot., 46, 111128.
  • Chau, Y. K., W. J. Snodgrass, and P. T. S. Wong (1977), A sampler for collecting evolved gases from sediment, Water Res., 11, 807809.
  • Cicerone, R. J., and R. S. Oremland (1988), Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 2, 299327.
  • Cole, J. J., and N. F. Caraco (1998), Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6, Limnol. Oceanogr., 43, 647656.
  • Cole, J. J., and M. L. Pace (1998), Hydrologic variability of small northern Michigan lakes measured by the addition of tracers, Ecosystems, 1, 310320.
  • Cole, J. J., M. Van de Bogert, D. Bastviken, D. L. Bade, M. L. Pace, and S. R. Carpenter (2004), Multiple approaches to estimating gas exchange at the air water interface, paper presented at Summer Meeting, Am. Soc. of Limnol. and Oceanogr. (ASLO), Savannah, Ga.
  • Crill, P. M., K. B. Bartlett, J. O. Wilson, D. I. Sebacher, R. C. Harriss, J. M. Melack, S. MacIntyre, and L. Lesack (1988), Tropospheric methane from an Amazonian floodplain lake, J. Geophys. Res., 93, 15641570.
  • Devol, A. H., J. E. Richey, W. A. Clark, and S. L. King (1988), Methane emissions to the troposphere from the Amazon floodplain, J. Geophys. Res., 93, 15831592.
  • Ehalt, D. H. (1974), The atmospheric cycle of methane, Tellus, 26, 5870.
  • Engle, D., and J. M. Melack (2000), Methane emissions from an Amazon floodplain lake: Enhanced release during episodic mixing and during falling water, Biogeochemistry, 51, 7190.
  • Fallon, R. D., S. Harris, R. S. Hanson, and T. D. Brock (1980), The role of methane in internal carbon cycling in Lake Mendota during summer stratification, Limnol. Oceanogr., 25, 357360.
  • Fendinger, N. J., D. D. Adams, and D. E. Glotfelty (1992), The role of gas ebullition in the transport of organic contaminants from sediments, Sci. Total Environ., 112, 189201.
  • Howard, D. L., J. I. Frea, and R. M. Pfister (1971), The potential for methane carbon cycling in Lake Erie, paper presented at 14th Conference on Great Lakes Research, Int. Assoc. of Great Lakes Res., Ann Arbor, Mich.
  • Huttunen, J. T., J. Alm, A. Liikanen, S. Juutinen, T. Larmola, T. Hammar, L. Silvola, and P. J. Martikainen (2003), Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions, Chemosphere, 52, 609621.
  • Jahne, B., K. O. Munnich, R. Bosinger, A. Dutzi, W. Huber, and P. Libner (1987), On parameters influencing air-water exchange, J. Geophys. Res., 92, 19371949.
  • Juutinen, S., J. Alm, T. Larmola, J. T. Huttunen, M. Morero, S. Saarnio, P. J. Martikainen, and J. Silvola (2003), Methane (CH4) release from littoral wetlands of Boreal lakes during an extended flooding period, Global Change Biol., 9, 413424.
  • Kalff, J. (2002), Limnology, 592 pp., Prentice Hall, Old Tappan, N. J.
  • Kankaala, P., S. Mäkelä, I. Bergström, E. Huitu, T. Käki, A. Ojala, M. Rantakari, P. Kortelaionen, and L. Arvola (2003), Midsummer spatial variation in methane efflux from stands of littoral vegetation in a boreal meso-eutrophic lake, Freshwater Biol., 48, 16171629.
  • Kasimir-Klemedtsson, Å., M. Nilsson, I. Sundh, and B. H. Svensson (2001), Växthusgasflöden från myrar och organogena jordar, report, 54 pp., Naturvårdsverket, Stockholm.
  • Kling, G. W., G. W. Kipphut, and M. C. Miller (1992), The flux of CO2 and CH4 from lakes and rivers in arctic Alaska, Hydrobiology, 240, 2336.
  • Marin, L., T. Kratz, and C. Bowser (1990), Spatial and temporal patterns in the hydrogeochemistry of a poor fen in northern Wisconsin, Biogeochemistry, 11, 6376.
  • Mattson, M. D., and G. E. Likens (1990), Air pressure and methane fluxes, Nature, 347, 718719.
  • Mattson, M. D., and G. E. Likens (1993), Redox reactions of organic matter decomposition in a soft water lake, Biogeochemistry, 19, 149172.
  • Michmerhuizen, C. M., R. G. Striegl, and M. E. McDonald (1996), Potential methane emission from north-temperate lakes following ice melt, Limnol. Oceanogr., 41, 985991.
  • Miyajima, T., Y. Yamada, E. Wada, T. Nakajima, T. Koitabashi, Y. T. Hanba, and K. Yoshi (1997), Distribution of greenhouse gases, nitrite, and δ13C of dissolved inorganic carbon in Lake Biwa: Implications for hypolimnetic metabolism, Biogeochemistry, 36, 205211.
  • Pace, M., and J. Cole (2002), Synchronous variation of dissolved organic carbon and color in lakes, Limnol. Oceanogr., 47, 333342.
  • Riera, J. L., J. E. Shindler, and T. K. Kratz (1999), Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, U.S.A. Can. J. Fish. Aquat. Sci., 56, 265274.
  • Rudd, J. W. M., and R. D. Hamilton (1978), Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism, Limnol. Oceanogr., 23, 337348.
  • Schultz, M., E. Faber, A. Hollerbach, H. G. Schröder, and H. Güde (2001), The methane cycling in the epilimnion of Lake Constance, Arch. Hydrobiol., 151, 157176.
  • Sebacher, D. I., R. C. Harris, and K. B. Bartlett (1985), Methane emissions to the atmosphere through aquatic plants, J. Environ. Qual., 14, 4046.
  • Segers, R. (1998), Methane production and methane consumption: A review of processes underlying wetland methane fluxes, Biogeochemistry, 41, 2351.
  • Smith, L. K., and W. M. Lewis (1992), Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies, Global Biogeochem. Cycles, 6, 323338.
  • Smith, L. K., W. M. J. Lewis, J. P. Chanton, G. Cronin, and S. K. Hamilton (2000), Methane emissions from the Orinoco River floodplain, Venezuela, Biogeochemistry, 51, 113140.
  • Sobek, S., G. Algesten, A. Bergstrom, M. Jansson, and L. Tranvik (2003), The catchment and climate regulation of pCO2 in boreal lakes, Global Change Biol., 9, 630641.
  • Sokal, R. R., and F. J. Rohlf (1995), Biometry, 887 pp., W. H. Freeman, New York.
  • St. Louis, V. L., C. A. Kelly, É. Duchemin, J. W. M. Rudd, and D. M. Rosenberg (2000), Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate, BioScience, 50, 766775.
  • Strayer, R. G., and J. M. Tiedje (1978), In situ methane production in a small, hypereutrophic, hardwater lake: Loss of methane from sediments by vertical diffusion and ebullition, Limnol. Oceanogr., 23, 12011206.
  • Striegl, R. G., and C. M. Michmerhuizen (1998), Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes, Limnol. Oceanogr., 43, 15191529.
  • Stumm, W., and J. J. Morgan (1996), Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 1022 pp., John Wiley, New York.
  • Sugimoto, A., and N. Fujita (1997), Characteristics of methane emissions from different vegetations on a wetland, Tellus, Ser. B, 49, 382392.
  • Utsumi, M., Y. Nojiri, T. Nakamura, T. Nozawa, A. Otsuki, and H. Seki (1998a), Oxidation of dissolved methane in a eutrophic, shallow lake: Lake Kasumigaura, Japan, Limnol. Oceanogr., 43, 471480.
  • Utsumi, M., Y. Nojiri, T. Nakamura, T. Nozawa, A. Otsuki, N. Takamura, M. Watanabe, and H. Seki (1998b), Dynamics of dissolved methane and methane oxidation in dimictic Lake Nojiri during winter, Limnol. Oceanogr., 43, 1017.
  • Walter, B. P., M. Heimann, and E. Matthews (2001), Modeling modern methane emissions from natural wetlands: 1. Model description and results, J. Geophys. Res., 106, 34,18934,206.
  • Wanninkhof, R. (1992), Relationship between gas exchange and wind speed over the ocean, J. Geophys. Res., 97, 73737382.
  • Webster, K., T. Kratz, C. Bowser, J. Magnuson, and W. Rose (1996), The influence of landscape position on lake chemical responses to drought in northern Wisconsin, Limnol. Oceanogr., 41, 977984.
  • Whiting, G. J., and J. P. Chanton (1993), Primary production control of methane emission from wetlands, Nature, 364, 794795.
  • Wiesenburg, D. A., and N. L. Guinasso (1979), Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water, J. Chem. Eng. Data, 24, 356360.
  • Wuebbles, D. J., and K. Hayhoe (2002), Atmospheric methane and global change, Earth Sci. Rev., 57(3–4), 177210.