SEARCH

SEARCH BY CITATION

References

  • Bartlett, K. B., and R. C. Harriss (1993), Review and assessment of methane emissions from wetlands, Chemosphere, 26(1–4), 261320.
  • Bender, M., and R. Conrad (1992), Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios, FEMS Microbiol. Ecol., 101, 261270.
  • Bonan, G. B. (1996), Sensitivity of a GCM simulation to subgrid infiltration and surface runoff, Clim. Dyn., 12, 279285.
  • Born, M., H. Dörr, and I. Levin (1990), Methane concentration in aerated soils in West Germany, Tellus, Ser. B, 42, 5864.
  • Brubaker, K., A. Rango, and W. Kustas (1996), Incorporate radiation inputs into the snowmelt runoff model, Hydrol. Proc., 10, 13291343.
  • Bubier, J. L., T. R. Moore, L. Bellisario, N. T. Comer, and P. M. Crill (1995), Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada, Global Biogeochem. Cycles, 9(4), 455470.
  • Bubier, J. L., P. M. Crill, and T. R. Moore (2000), Magnitude and control of trace gas exchange in boreal ecosystems, in Collected Data of the Boreal Ecosystem-Atmosphere Study [CD-ROM], edited by J. Newcomer et al., NASA Goddard Space Flight Cent., Greenbelt, Md.
  • Cao, M., S. Marshall, and K. Gregson (1996), Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model, J. Geophys. Res., 101(D9), 14,39914,414.
  • Cao, M., K. Gregson, and S. Marshall (1998), Global methane emission from wetlands and its sensitivity to climate change, Atmos. Environ., 32(19), 32933299.
  • Carter, A. J., and R. J. Scholes (2000), Soil data v2.0: Generating a global database of soil properties, report, Environ. CSIR, Pretoria.
  • Celia, M. A., E. T. Bouloutas, and R. L. Zarba (1990), A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26(7), 14831496.
  • Chen, Y. (2004), Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model, Ph.D. thesis, Mass. Inst. of Technol., Cambridge, 180 pp.
  • Christensen, T. R., S. Jonasson, T. V. Callagham, and M. Havström (1995), Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments, J. Geophys. Res., 100(D10), 21,03521,045.
  • Clapp, R. B., and G. M. Hornberger (1978), Empirical equations for some soil hydraulic properties, Water Resour. Res., 14(4), 601604.
  • Crill, P. M., K. B. Bartlett, R. C. Harriss, E. Gorham, E. S. Verry, D. I. Sebacher, L. Mazdar, and W. Sanner (1988), Methane flux from Minnesota peatlands, Global Biogeochem. Cycles, 2(4), 371384.
  • Dargaville, R. J., et al. (2002), Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate and land-use effects, Global Biogeochem. Cycles, 16(4), 1092, doi:10.1029/2001GB001426.
  • Dise, N. B. (1993), Methane emission from Minnesota peatlands: Spatial and seasonal variability, Global Biogeochem. Cycles, 7(1), 123142.
  • Dlugokencky, E. J., K. A. Masaire, P. M. Lang, P. P. Tans, L. P. Steele, and E. G. Nisbet (1994), A dramatic decrease in the growth rate of atmospheric methane in the Northern Hemisphere during 1992, Geophys. Res. Lett., 21(1), 4548.
  • Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M. Lang, and E. S. Kasischke (2001), Measurements of an anomalous global methane increase during 1998, Geophys. Res. Lett., 28(3), 499502.
  • Dörr, H., L. Katruff, and I. Levin (1993), Soil texture parameterization of the methane uptake in aerated soils, Chemosphere, 26, 697713.
  • Fiedler, S., and M. Sommer (2000), Methane emissions, groundwater levels and redox potentials of common wetland soils in a temperate-humid climate, Global Biogeochem. Cycles, 14(4), 10811093.
  • Friborg, T., T. R. Christensen, and H. Soegaard (1997), Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micrometeorological techniques, Geophys. Res. Lett., 24(23), 30613064.
  • Friborg, T., H. Soegaard, T. R. Christensen, C. R. Lloyd, and N. S. Panikov (2003), Siberian wetlands: Where a sink is a source, Geophys. Res. Lett., 30(21), 2129, doi:10.1029/2003GL017797.
  • Frolking, S., and P. Crill (1994), Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: Measurement and modeling, Global Biogeochem. Cycles, 8(4), 385397.
  • Frolking, S., et al. (1996), Modeling temporal variability in the carbon balance of a spruce/moss boreal forest, Global Change Biol., 2, 343366.
  • Gerard, G., and J. Chanton (1993), Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: Defining upper limits, Biogeochemistry, 23, 7997.
  • Goodrich, L. E. (1978a), Some results of a numerical study of ground thermal regimes, paper presented at 3rd International Conference on Permafrost, Natl. Res. Counc. of Can., Ottawa.
  • Goodrich, L. E. (1978b), Efficient numerical technique for one-dimensional thermal problems with phase change, Int. J. Heat Mass Transfer, 21, 615621.
  • Granberg, G., H. Grip, M. O. Lofvenius, I. Sundh, B. H. Svensson, and M. Nilsson (1999), A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires, Water Resour. Res., 35(12), 37713782.
  • Gulledge, J., and J. P. Schimel (1998), Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils, Soil Biol. Biochem., 30(8/9), 11271132.
  • Harriss, R., K. Bartlett, S. Frolking, and P. Crill (1993), Methane emissions from northern high-latitude wetlands, Biogeochemistry of Global Change: Radiatively Active Trace Gases, edited by R. S. Oremland, pp. 449486, Chapman and Hall, New York.
  • Hillel, D. (1980), Fundamental of Soil Physics, 413 pp., Academic, San Diego, Calif.
  • Houweling, S., F. Dentener, J. Lelieveld, B. Walter, and E. Dlugokencky (2000), The modeling of tropospheric methane: How well can point measurements be reproduced by a global model? J. Geophys. Res., 105(D7), 89819002.
  • King, J., W. Reeburgh, and S. Regli (1998), Methane Flux Data, Alaska North Slope, 1994–1996, report, Natl. Snow and Ice Data Cent., Boulder, Colo. (Available at http://nsidc.org/data/arcss013.html).
  • King, S. L., P. D. Quay, and J. M. Lansdown (1989), The 13C/12C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations, J. Geophys. Res., 94(D15), 18,27318,277.
  • Li, C., and S. Frolking (1992), Simulation of N2O emission from soil by DNDC model with generalized climate scenarios, report, Univ. of N. H., Durham.
  • Liston, G. E., and R. A. Pielke (2000), A climate version of the regional atmospheric modeling system, Theor. Appl. Climatol., 66, 2947.
  • Liu, Y. (1996), Modeling the emissions of nitrous oxide (N2O) and methane (CH4) from the terrestrial biosphere to the atmosphere, Ph.D. thesis, Mass. Inst. of Technol., 219 pp., Cambridge.
  • Matthews, E., and I. Fung (1987), Methane emissions from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1(1), 6186.
  • McClaugherty, C. A., J. D. Aber, and J. M. Melillo (1982), The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems, Ecology, 63(5), 14811490.
  • McGuire, A. D., J. M. Melillo, J. T. Randerson, W. J. Parton, M. Heimann, R. A. Meier, J. S. Clein, D. W. Kicklighter, and W. Sauf (2000), Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: comparison with measurements of atmospheric carbon dioxide at high latitudes, Biogeochemistry, 48, 91114.
  • McGuire, A. D., et al. (2004), Canada and Alaska, in Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth's Surface, chap. 9, Kluwer Acad., Norwell, Mass., in press.
  • McNaughton, K. G., and P. G. Jarvis (1983), Predicting effects of vegetation changes on transpiration and evaporation, in Water Deficits and Plant Growth, vol. 7, pp. 147, Academic, San Diego, Calif.
  • Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore III, C. J. Vörösmarty, and A. L. Schloss (1993), Global climate change and terrestrial net primary production, Nature, 63, 234240.
  • Minami, K. (1989), Effects of Agricultural Management on Methane Emission From Rice Paddies, Natl. Inst. of Agro-Environ. Sci., Tsukuba, Japan.
  • Moore, T. R., N. Roulet, and R. Knowles (1990), Spatial and temporal variations of methane flux from subarctic/northern boreal fens, Global Biogeochem. Cycles, 4(1), 2649.
  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani (1997), Increased plant growth in the northern high latitudes from 1981–1991, Nature, 386, 698701.
  • Myneni, R. B., J. Dong, C. J. Tucker, R. K. Kaufmann, P. E. Kauppi, J. Liski, L. Zhou, V. Alexeyev, and M. K. Hughes (2001), A large carbon sink in the woody biomass of northern forests, Proc. Natl. Acad. Sci. USA., 98(26), 14,78414,789.
  • Newcomer, J., et al. (Eds.) (2000), Collected Data of The Boreal Ecosystem-Atmosphere Study [CD-ROM], NASA Goddard Space Flight Cent., Greenbelt, Md.
  • Ojima, D., A. Mosier, S. J. DelGrosso, and W. J. Parton (2000), TRAGNET analysis and synthesis of trace gas fluxes, Global Biogeochem. Cycles, 14(4), 995997.
  • Potter, C. S., E. A. Davidson, and L. V. Verchot (1996), Estimation of global biogeochemical controls and seasonality in soil methane consumption, Chemosphere, 32, 22192246.
  • Prather, M., et al. (2001), Atmospheric chemistry and greenhouse gases, in Climate Change 2001: The Scientific Basis—Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 239287, Cambridge Univ. Press, New York.
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1990), Numerical Recipes in C: The Art of Scientific Computing, 735 pp., Cambridge Univ. Press, New York.
  • Prinn, R. G., et al. (1999), Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies, Clim. Change, 41(3/4), 469546.
  • Ridgwell, A. J., S. J. Marshall, and K. Gregson (1999), Consumption of atmospheric methane by soils: A process-based model, Global Biogeochem. Cycles, 13(1), 5970.
  • Romanovsky, V. E., and T. E. Osterkamp (1997), Thawing of the active layer on the coastal plain of the Alaskan Arctic, Permafrost Periglacial Proc., 8, 122.
  • Romanovsky, V. E., T. E. Osterkamp, T. S. Sazonova, N. I. Shender, and V. T. Balobaev (2000), Past and future changes in permafrost temperatures along the East Siberian Transect and an Alaskan Transect, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract B71F-09.
  • Rosenberg, N. J., B. L. Blad, and S. B. Verma (1983), Microclimate: The Biological Environment, second ed., pp. 1495, John Wiley, Hoboken, N. J.
  • Schipper, L. A., and K. R. Reddy (1996), Determination of methane oxidation in the rhizosphere of Sagittaria lancifolia using methyl fluoride, Soil Sci. Soc. Am. J., 60, 611616.
  • Sebacher, D. J., R. C. Harriss, K. B. Bartlett, S. M. Sebacher, and S. S. Grice (1986), Atmospheric methane sources: Alaskan tundra, an alpine fen and a subarctic boreal marsh, Tellus, Ser. B., 38, 110.
  • Segers, R. (1998), Methane production and methane consumption: A review of processes underlying wetland methane fluxes, Biogeochemistry, 41, 2351.
  • Segers, R., and S. W. M. Kengen (1998), Methane production as a function of anaerobic carbon mineralization: A process model, Soil Biol. Biochem., 30(8/9), 11071117.
  • Sellers, P. J., et al. (1997), BOREAS in 1997: Experiment overview, scientific results, and future directions, J. Geophys. Res., 102(D24), 28,73128,769.
  • Skinner, F. A. (1968), The Ecology of Soil Bacteria, Univ. of Toronto Press, Toronto, Ont., Canada.
  • Smith, L. C., G. M. MacDonald, A. A. Velichko, D. W. Beilman, O. K. Borisova, K. E. Frey, K. V. Kremenetski, and Y. Sheng (2004), Siberian peatlands a net carbon sink and global methane source since the early Holocene, Science, 303, 353356.
  • Sokal, R. R., and F. J. Rohlf (1981), Biometry: The Principles and Practice of Statistics in Biological Research, 2nd ed., 859 pp., W. H. Freeman, New York.
  • Steudler, P. A., R. D. Bowden, J. M. Melillo, and J. D. Aber (1989), Influence of nitrogen fertilization on methane uptake in temperate forest soils, Nature, 341, 314316.
  • Suyker, A. E., S. B. Verma, R. J. Clement, and D. P. Billesbach (1996), Methane flux in a boreal fen: Season-long measurement by eddy correlation, J. Geophys. Res., 101(D22), 28,63728,647.
  • Suyker, A. E., S. B. Verma, and T. J. Arkebauer (1997), Season-long measurement of carbon dioxide exchange in a boreal fen, J. Geophys. Res., 102(D24), 29,02129,028.
  • Thornton, P. E. (2000), Biome-BGC version 4.1.1, report, Num. Terradyn. Simul. Group (NTSG), School of For., Univ. of Mont., Missoula.
  • Tian, H., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, and J. Helfrich (1999), The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States, Tellus, Ser. B, 51(2), 414452.
  • van der Werf, G. R., J. T. Randerson, G. J. Collatz, L. Giglio, P. S. Kasibhatla, A. F. Arellano Jr., S. C. Olsen, and E. S. Kasischke (2004), Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period, Science, 303, 7376.
  • Vitt, H. D., L. A. Halsey, and S. C. Zoltai (2000), The changing landscape of Canada's western boreal forest: The current dynamics of permafrost, Can. J. For. Res., 30, 283287.
  • Vörösmarty, C. J., B. Moore III, A. L. Grace, M. P. Gildea, J. M. Melillo, B. J. Peterson, E. B. Rastetter, and P. A. Steudler (1989), Continental scale models of water balance and fluvial transport: An application to South America, Global Biogeochem. Cycles, 3(3), 241265.
  • Walter, B. P. (1998), Development of a process-based model to drive methane emissions from natural wetlands for climate studies, dissertation, Max-Planck-Inst. für Meteorol., Hamburg, Germany.
  • Walter, B. P., and M. Heimann (2000), A process-based, climate-sensitive model to derive methane emission from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cycles, 14(3), 745765.
  • Walter, B. P., M. Heimann, and E. Matthews (2001a), Modeling modern methane emissions from natural wetlands: 1. Model description and results, J. Geophys. Res., 106(D24), 34,18934,206.
  • Walter, B. P., M. Heimann, and E. Matthews (2001b), Modeling modern methane emissions from natural wetlands: 2. Interannual variations 1982–1993, J. Geophys. Res., 106(D24), 34,20734,219.
  • Wang, Z. P., R. D. Delaune, P. H. Masscheleyn, and W. H. Patrick Jr. (1993), Soil redox and pH effects on methane production in a flooded rice soil, Soil Sci. Soc. Am. J., 57, 386391.
  • Waring, R. H., and S. W. Running (1998), Forest Ecosystems, Analysis at Multiple Scales, second ed., pp. 1370, Academic Press, San Diego, Calif.
  • West, A. E., and S. K. Schmidt (1998), Wetting stimulates atmospheric CH4 oxidation by alpine soil, FEMS Microbiol. Ecol., 25, 349353.
  • Whalen, S. C., and W. S. Reeburgh (1990a), Consumption of atmospheric methane by tundra soils, Nature, 346, 160162.
  • Whalen, S. C., and W. S. Reeburgh (1990b), A methane flux transect along the trans-Alaska pipeline haul road, Tellus, Ser. B, 42, 237249.
    Direct Link:
  • Whalen, S. C., and W. S. Reeburgh (1992), Interannual variations in tundra methane emissions: A 4-year time series at fixed sites, Global Biogeochem. Cycles, 6(2), 139159.
  • Whalen, S., W. S. Reeburgh, and K. S. Kizer (1991), Methane consumption and emission by taiga, Global Biogeochem. Cycles, 5(3), 261273.
  • Zhang, Y., C. Li, C. C. Trettin, H. Li, and G. Sun (2002), An integrated model of soil hydrology, and vegetation for carbon dynamics in wetland ecosystems, Global Biogeochem. Cycles, 16(4), 1061, doi:10.1029/2001GB001838.
  • Zhuang, Q., V. E. Romanovsky, and A. D. McGuire (2001), Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics, J. Geophys. Res., 106(D24), 33,64933,670.
  • Zhuang, Q., A. D. McGuire, K. P. O'Neill, J. W. Harden, V. E. Romanovsky, and J. Yarie (2002), Modeling the soil thermal and carbon dynamics of a fire chronosequence in interior Alaska, J. Geophys. Res., 107(D1), 8147, doi:10.1029/2001JD001244, 2002. [Printed 108 (D1), 2003].
  • Zhuang, Q., et al. (2003), Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics, Tellus, Ser. B, 55, 751776.