SEARCH

SEARCH BY CITATION

References

  • Algesten, G., S. Sobek, A.-K. Bergström, A. Ågren, L. J. Tranvik, and M. Jansson (2004), Role of lakes for organic carbon cycling in the boreal zone, Global Change Biol., 10, 141147.
  • Anderson, D. E., R. G. Striegl, D. I. Stannard, C. M. Michmerhuizen, T. A. McConnaughey, and J. W. LaBaugh (1999), Estimating lake-atmosphere CO2 exchange, Limnol. Oceanogr., 44(4), 9881001.
  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, and F. Thingstad (1983), The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10, 257263.
  • Ball, E., and J. Glucksmann (1980), A limnological survey of Lake Dakataua, a large caldera lake on West New Britain, Papua New Guinea, with comparisons to Lake Wisdom, a younger nearby caldera lake, Freshwater Biol., 10, 7384.
  • Bergström, A.-K., G. Algesten, S. Sobek, L. J. Tranvik, and M. Jansson (2004), Emission of CO2 from hydroelectric reservoirs in northern Sweden, Arch. Hydrobiol., 159(1), 2542.
  • Berman-Frank, I., T. Zohary, J. Erez, and Z. Dubinsky (1994), CO2 availability, carbonic anhydrase, and the annual dinoflagellate bloom in Lake Kinneret, Limnol. Oceanogr., 39(8), 18221834.
  • Carignan, R. (1998), Automated determination of carbon dioxide, oxygen and nitrogen partial pressures in surface waters, Limnol. Oceanogr., 43(5), 969975.
  • Cole, J. J., and N. F. Caraco (1998), Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6, Limnol. Oceanogr., 43(3), 647656.
  • Cole, J. J., N. F. Caraco, G. W. Kling, and T. K. Kratz (1994), Carbon dioxide supersaturation in the surface waters of lakes, Science, 265, 15681570.
  • Cole, J. J., M. L. Pace, S. R. Carpenter, and J. F. Kitchell (2000), Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations, Limnol. Oceanogr., 45(8), 17181730.
  • Coyne, P. I., and J. J. Kelley (1974), Carbon dioxide partial pressures in arctic surface waters, Limnol. Oceanogr., 19(6), 928938.
  • Curtis, P. J. (1998), Climatic and hydrologic control of DOM concentration and quality in lakes, in Aquatic Humic Substances, edited by D. O. Hessen, and L. J. Tranvik, pp. 93104, Springer, New York.
  • Dean, W. E., and E. Gorham (1998), Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands, Geology, 26(6), 535538.
  • del Giorgio, P. A., J. J. Cole, N. F. Caraco, and R. H. Peters (1999), Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes, Ecology, 80(4), 14221431.
  • den Heyer, C., and J. Kalff (1998), Organic matter mineralization rates in sediments: A within- and among-lake study, Limnol. Oceanogr., 43(4), 695705.
  • Enquist, B. J., E. P. Economo, T. E. Huxman, A. P. Allen, D. Ignace, and J. F. Gillooly (2003), Scaling metabolism from organisms to ecosystems, Nature, 423, 639642.
  • Eriksson, L., E. Johansson, N. Kettaneh-Wold, and S. Wold (2001), Multi- and Megavariate Data Analysis: Principles and Applications, Umetrics AB, Umeå, Sweden.
  • Gelbrecht, J., M. Fait, M. Dittrich, and C. Steinberg (1998), Use of GC and equilibrium calculations of CO2 saturation index to indicate whether freshwater bodies in north-east Germany are net sources or sinks for atmospheric CO2, Fresenius J. Anal. Chem., 361, 4753.
  • Giardina, C. P., and M. G. Ryan (2000), Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature, Nature, 404, 858861.
  • Global Soil Data Task Group (2000), Global gridded surfaces of selected soil characteristics (IGBP-DIS), data set, Oak Ridge Natl. Lab. Distrib. Active Arch. Cent., Oak Ridge, Tenn. (Available at http://www.daac.ornl.gov).
  • Hanson, P. C., D. L. Bade, S. R. Carpenter, and T. K. Kratz (2003), Lake metabolism: Relationships with dissolved organic carbon and phosphorus, Limnol. Oceanogr., 48(3), 11121119.
  • Hanson, P. C., A. I. Pollard, D. L. Bade, K. Predick, S. R. Carpenter, and J. A. Foley (2004), A model of carbon evasion and sedimentation in temperate lakes, Global Change Biol., 10, 12851298.
  • Hessen, D. O., and L. J. Tranvik (1998), Aquatic Humic Substances: Ecology and Biogeochemistry, Ecol. Stud., vol. 133, Springer, New York.
  • Hesslein, R. H., J. W. M. Rudd, C. A. Kelly, P. Ramlal, and K. A. Hallard (1991), Carbon dioxide pressure in surface waters of Canadian lakes, in Air-Water Mass Transfer, edited by S. C. Wilhelms, and J. S. Gulliver, pp. 413431, Am. Soc. of Civ. Eng., New York.
  • Hope, D., T. K. Kratz, and J. L. Riera (1996), Relationship between PCO2 and dissolved organic carbon in northern Wisconsin lakes, J. Environ. Qual., 25, 14421445.
  • Hope, D., S. M. Palmer, M. F. Billett, and J. J. C. Dawson (2001), Carbon dioxide and methane evasion from a temperate peatland stream, Limnol. Oceanogr., 46(4), 847857.
  • Hoppe, H.-G., K. Gocke, R. Koppe, and C. Begler (2002), Bacterial growth and primary production along a north-south transect of the Atlantic Ocean, Nature, 416, 168171.
  • Höskuldsson, A. (1988), PLS regression methods, J. Chemometr., 2, 211228.
  • Jansson, M., A.-K. Bergström, P. Blomqvist, and S. Drakare (2000), Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes, Ecology, 81(11), 32503255.
  • Jones, J. B. J., and P. J. Mulholland (1998), Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water, Biogeochemistry, 40, 5772.
  • Jones, J. B., E. H. Stanley, and P. J. Mulholland (2003), Long-term decline in carbon dioxide supersaturation in rivers across the contiguous United States, Geophys. Res. Lett., 30(10), 1495, doi:10.1029/2003GL017056.
  • Jones, R. I. (1998), Phytoplankton, primary production and nutrient cycling, in Aquatic Humic Substances: Ecology and Biogeochemistry, edited by D. O. Hessen, and L. J. Tranvik, pp. 145195, Springer, New York.
  • Jones, R. I., J. Grey, C. Quarmby, and D. Sleep (2001), Sources and fluxes of inorganic carbon in a deep, oligotrophic lake (Loch Ness, Scotland), Global Biogeochem. Cycles, 15(4), 863870.
  • Jonsson, A., M. Meili, A.-K. Bergström, and M. Jansson (2001), Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden), Limnol. Oceanogr., 46(7), 16911700.
  • Jonsson, A., J. Karlsson, and M. Jansson (2003), Sources of carbon dioxide in clearwater and humic lakes in Northern Sweden, Ecosystems, 6, 224235.
  • Karlsson, J. (2001), Pelagic energy mobilization and carbon dioxide balance in subarctic lakes in northern Sweden, Ph.D. thesis, Umeå Univ., Umeå, Sweden.
  • Kelly, C. A., E. Fee, P. S. Ramlal, J. W. M. Rudd, R. H. Hesslein, C. Anema, and E. U. Schindler (2001), Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes, Limnol. Oceanogr., 46(5), 10541064.
  • Kling, G. W., G. W. Kipphut, and M. C. Miller (1991), Arctic lakes and streams as gas conduits to the atmosphere: Implications for tundra carbon budgets, Science, 251, 298301.
  • Kling, G. W., G. W. Kipphut, and M. C. Miller (1992), The flux of CO2 and CH4 from lakes and rivers in arctic Alaska, Hydrobiologia, 240, 2336.
  • Kortelainen, P., J. T. Huttunen, T. Väisäinen, T. Mattsson, P. Karjalainen, and P. J. Martikainen (2000), CH4, CO2 and N2O supersaturation in 12 Finnish lakes before and after ice-melt, Verh. Int. Ver. Limnol., 27, 14101414.
  • Kortelainen, P., H. Pajunen, M. Rantakari, and M. Saarnisto (2004), A large carbon pool and small sink in boreal Holocene lake sediments, Global Change Biol., 10, 16481653.
  • Kratz, T. K., J. Schindler, D. Hope, J. L. Riera, and C. J. Browser (1997), Average annual carbon dioxide concentrations in eight neighboring lakes in northern Wisconsin, USA, Verh. Int. Ver. Limnol., 26, 335338.
  • Leggett, M. F., M. R. Servos, R. H. Hesslein, O. Johansson, E. S. Millard, and D. G. Dixon (1999), Biogeochemical influences on the carbon isotope signatures of Lake Ontario biota, Can. J. Fish. Aquat. Sci., 56, 22112218.
  • Lindroth, A., A. Grelle, and A.-S. Morén (1998), Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity, Global Change Biol., 4, 443450.
  • Liski, J., H. Ilvesniemi, A. Mäkelä, and C. J. Westman (1999), CO2 emissions from soils in response to climatic warming are overestimated —The decomposition of old soil organic matter is tolerant to temperature, Ambio, 28(2), 171174.
  • Löffler, H. (1968), Die Hochgebirgsseen Ostafrikas, Hochgebirgsforschung, 1, 168.
  • Löffler, H. (1978), Limnological and paleolimnological data on the Bale Mountain lakes (Ethiopia), Verh. Int. Ver. Limnol., 20, 11311138.
  • Maberly, S. C. (1996), Diel episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake, Freshwater Biol., 35, 579598.
  • Maehl, P. (1982), Phytoplankton production in relation to physico-chemical conditions in a small, oligotrophic subarctic lake in South Greenland, Holarctic Ecol., 5, 420427.
  • Milbrink, G. (1977), On the limnology of two alkaline lakes (Nakuru and Naivasha) in the East Rift Valley system in Kenya, Int. Rev. Ges. Hydrobiol., 62(1), 117.
  • Miyajima, T., Y. Yamada, E. Wada, T. Nakajima, T. Koitabashi, Y. T. Hanba, and K. Yoshii (1997), Distribution of greenhouse gases, nitrite, and δ13C of dissolved inorganic carbon in Lake Biwa: Implications for hypolimnetic metabolism, Biogeochemistry, 36, 205221.
  • Mizandrontseva, I. B., and K. N. Mizandrontseva (1994), Partial pressure and free CO2 exchange in the Baikal L. water-atmosphere system (in Russian), Vodnye Resur., 21(1), 7279.
  • Murugavel, P., and T. J. Pandian (2000), Effect of altitude on hydrology, productivity and species richness in Kodayar—A tropical peninsular Indian aquatic system, Hydrobiologia, 430, 3357.
  • New, M., M. Humle, and P. D. James (2000), Global 30-year mean monthly climatology, 1961–1990, data set, Oak Ridge Natl. Lab. Distrib. Active Arch. Cent., Oak Ridge, Tenn. (Available at http://www.daac.ornl.gov).
  • Pedrosa, P., and C. E. Rezende (2000), Dissolved inorganic carbon and metabolism of an eutrophic lacustrine system: Variations from a 36-hour study, Rev. Bras. Biol., 60(4), 607614.
  • Pomeroy, L. R., and W. J. Wiebe (2001), Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria, Aquat. Microbiol. Ecol., 23, 187204.
  • Prairie, Y. T., D. F. Bird, and J. J. Cole (2002), The summer metabolic balance in the epilimnion of southeastern Quebec lakes, Limnol. Oceanogr., 47(1), 316321.
  • Qadri, M. Y., and A. R. Yousuf (1978), Seasonal variations in the physico-chemical factors of a subtropical lake in Kashmir, J. Inland Fish. Soc. India, 10, 8996.
  • Quay, P. D., S. R. Emerson, B. M. Quay, and A. H. Devol (1986), The carbon cycle for Lake Washington—A stable isotope study, Limnol. Oceanogr., 31(3), 596611.
  • Rai, H., and G. Hill (1981), Physical and chemical studies of Lago Tupé, a central Amazonian black water “Ria Lake”, Int. Rev. Ges. Hydrobiol., 66(1), 3782.
  • Raich, J. W., and W. H. Schlesinger (1992), The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate, Tellus, Ser. B, 44(2), 8199.
  • Ramlal, P. S., R. H. Hesslein, R. E. Hecky, E. J. Fee, J. W. M. Rudd, and S. J. Guildford (1994), The organic carbon budget of a shallow Arctic tundra lake on the Tuktoyaktuk Peninsula, N.W.T. Canada, Biogeochemistry, 24(2), 145172.
  • Rasmussen, J. B., L. Godbout, and M. Schallenberg (1989), The humic content of lake water and its relationship to watershed and lake morphometry, Limnol. Oceanogr., 34(7), 13361343.
  • Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess (2002), Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2, Nature, 416, 617620.
  • Risk, D., L. Kellman, and H. Beltrami (2002), Carbon dioxide in soil profiles: Production and temperature dependence, Geophys. Res. Lett., 29(6), 1087, doi:10.1029/2001GL014002.
  • Rivkin, R. B., and L. Legendre (2001), Biogenic carbon cycling in the upper ocean: Effects of microbial respiration, Science, 291, 23982400.
  • Sharma, P. C., and M. C. Pant (1987), Limnology of a subtropical lake, Bhimtal (U.P.), India, Limnologica, 18(1), 1527.
  • Sobek, S., G. Algesten, A.-K. Bergström, M. Jansson, and L. J. Tranvik (2003), The catchment and climate regulation of pCO2 in boreal lakes, Global Change Biol., 9, 630641.
  • Sommaruga, R., and D. Conde (1997), Seasonal variability of metabolically active bacterioplankton in the euphotic zone of a hypertrophic lake, Aquat. Microbiol. Ecol., 13, 241248.
  • Striegl, R. G., and C. M. Michmerhuizen (1998), Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes, Limnol. Oceanogr., 43(7), 15191529.
  • Stumm, W., and J. J. Morgan (1996), Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley-Interscience, Hoboken, N. J.
  • Takahashi, M., T. Hama, K. Matsunaga, and N. Handa (1995), Photosynthetic organic carbon production and respiratory organic carbon consumption in the trophogenic layer of Lake Biwa, J. Plankton Res., 17(5), 10171025.
  • Talling, J. F., and I. B. Talling (1965), The chemical composition of African lake waters, Int. Rev. Ges. Hydrobiol., 50(3), 421463.
  • Tranvik, L. J. (1988), Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content, Microbial Ecol., 16, 311322.
  • Updegraff, K., S. D. Bridgham, J. Pastor, P. Weishampel, and C. Harth (2001), Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation, Ecol. Appl., 11(2), 311326.
  • Valentini, R., et al. (2000), Respiration as the main determinant of carbon balance in European forests, Nature, 404, 861865.
  • Vyverman, W. (1994), Limnological features of lakes on the Sepik-Ramu floodplain, Papua New Guinea, Aust. J. Freshwater Res., 45, 12091224.
  • Weiler, R. R. (1975), Carbon dioxide exchange and productivity in Lake Erie and Lake Ontario, Verh. Int. Ver. Limnol., 19, 694704.
  • Weiss, R. F. (1974), Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203215.
  • Wetzel, R. G. (2001), Limnology: Lake and River Ecosystems, Elsevier, New York.
  • White, P. A., J. Kalff, J. B. Rasmussen, and J. M. Gasol (1991), The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats, Microbial Ecol., 21, 99118.
  • Zinabu, G.-M. (2002), The effects of wet and dry seasons on concentrations of solutes and phytoplankton biomass in seven Ethiopian rift-valley lakes, Limnologica, 32, 169179.