SEARCH

SEARCH BY CITATION

References

  • Asner, G. P., A. R. Townsend, and B. H. Braswell (2000), Satellite observation of El Niño effects on Amazon forest phenology and productivity, Geophys. Res. Lett., 27, 981984.
  • Asner, G. P., D. Nepstad, G. Cardinot, and D. Ray (2004), Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy, Proc. Natl. Acad. Sci. U. S. A., 101, 60396044.
  • Behrenfeld, M. J., et al. (2001), Biospheric primary production during an ENSO transition, Science, 291, 25942597.
  • Bousquet, P., P. Peylin, P. Ciais, C. L. Quere, P. Friedlingstein, and P. P. Tans (2000), Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290, 13421346.
  • Cao, M.-K., S. D. Prince, K.-R. Li, B. Tao, J. Small, and X.-M. Shao (2003), Response of terrestrial carbon uptake to climate interannual variability in China, Global Change Biol., 9, 536546.
  • Carlson, T. N., and D. A. Ripley (1997), On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens. Environ., 62, 241252.
  • Chinese Climate Change National Research Group (2000), Chinese Climate Change National Research, Tsinghua Univ. Press, Beijing.
  • Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey (1995), A large Northern Hemisphere terrestrial CO2 sinks indicated by the 13C/12C ratio of atmospheric CO2, Science, 269, 10981102.
  • Ciais, P., P. Friedlingstein, A. Friend, and D. S. Schimel (2001), Integrating global models of terrestrial primary productivity, in Net Primary Production: Past, Present, and Future, edited by J. Roy, and H. Mooney, pp. 449478, Elsevier, New York.
  • Cramer, W., D. W. Kicklighter, A. Bondeau, B. Moore, C. Churkina, B. Nemry, A. Ruimy, and A. L. Schloss (1999), Comparing global models of terrestrial net primary productivity (NPP): Overview and key results, Global Change Biol., 5, Suppl. 1, 115.
  • Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7, 357373.
  • Dai, A., and I. Y. Fung (1993), Can climate variability contribute to the “missing” CO2 sink? Global Biogeochem. Cycles, 7, 599609.
  • Denning, A. S. (1994), Investigations of the transport, sources, and sinks of atmospheric CO2 using a general circulation model, Ph.D. dissertation, 336 pp., Dep. of Atmos. Sci., Colo. State Univ., Fort Collins.
  • Dong, J., R. K. Kaufmann, R. B. Myneni, C. J. Tucker, P. E. Kauppi, J. Liski, W. Buermann, V. Alexeyev, and M. K. Hughes (2003), Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks, Remote Sens. Environ., 84, 393410.
  • Editorial Committee for China's Agricultural Yearbook (ECCAY) (2000), China's Agricultural Yearbook 1982 to 1999, China Agric. Press, Beijing.
  • Editorial Committee for China's Vegetation (2001), Atlas of China'sVegetation With a Scale of 1:100,0000, Science, Beijing.
  • Fang, J. Y., S. L. Piao, Z. Y. Tang, C. H. Peng, and W. Ji (2001a), Relationship between interannual variability in net primary production and precipitation, Science, 293, 1723.
  • Fang, J. Y., A. P. Chen, C. H. Peng, S. Q. Zhao, and L. J. Ci (2001b), Changes in forest biomass carbon storage in China between 1949 and 1998, Science, 292, 23202322.
  • Fang, J. Y., Y. C. Song, H. Y. Liu, and S. L. Piao (2002), Vegetation-climate relationship and its application in the division of vegetation zone in China, Acta Bot. Sin., 44, 11051122.
  • Fang, J. Y., S. L. Piao, C. B. Field, Y. D. Pan, Q. H. Guo, L. M. Zhou, C. H. Peng, and S. Tao (2003), Increasing net primary production in China from 1982 to 1999, Front. Ecol. Environ., 1, 293297.
  • Fang, J. Y., S. L. Piao, J. S. He, and W. H. Ma (2004), Increasing terrestrial vegetation activity in China, 1982–1999, Sci. China, Ser. C, 47, 229240.
  • Fensholt, R., I. Sandholt, and M. S. Rasmussen (2004), Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements, Remote Sens. Environ., 91, 490507.
  • Field, C. B., J. T. Randerson, and C. M. Malmström (1995), Global net primary production: Combining ecology and remote sensing, Remote. Sens. Environ., 51, 7488.
  • Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski (1998), Primary production of the biosphere: Integrating terrestrial and oceanic components, Science, 281, 237240.
  • Gutman, G. (1999), On the use of long-term global data of land reflectances and vegetation indices derived from the Advanced Very High Resolution Radiometer, J. Geophys. Res., 104, 62416255.
  • Haxeltine, A., and I. C. Prentice (1996), BIOME3: An equilibrium biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types, Global Biogeochem. Cycles, 10, 693709.
  • Hicke, J. A., G. P. Asner, J. T. Randerson, C. J. Tucker, B. Los, R. Birdsey, J. C. Jenkins, and C. B. Field (2002a), Trends in North American net primary productivity derived from satellite observations, 1982–1998, Global Biogeochem. Cycles, 16(2), 1018, doi:10.1029/2001GB001550.
  • Hicke, J. A., G. P. Asner, J. T. Randerson, C. J. Tucker, B. Los, R. Birdsey, J. C. Jenkins, C. B. Field, and E. Holland (2002b), Satellite-derived increases in net primary productivity across North America, 1982–1998, Geophys. Res. Lett., 29(10), 1427, doi:10.1029/2001GL013578.
  • Holben, B. N. (1986), Characteristics of maximum value composite images from temporal AVHRR data, Int. J. Remote Sens., 7, 14171434.
  • Ichii, K., Y. Matsui, Y. Yamaguchi, and K. Ogawa (2001), Comparison of global net primary production trends obtained from satellite-based normalized difference vegetation index and carbon cycle model, Global Biogeochem. Cycles, 15, 351363.
  • Institute of Geography (1996), Digitized Vegetation Map of China, Natl. Lab. for GIS and Remote Sens., Beijing.
  • Institute of Soil Science (1986), The Soil Atlas of China, Cartographic Publ. House, Beijing.
  • Keeling, C. D., J. F. S. Chin, and T. P. Whorf (1996), Increased activity of northern vegetation inferred from atmospheric CO2 measurements, Nature, 382, 146149.
  • Li, X.-W., J.-Y. Fang, and S.-L. Piao (2003), Land use changes and its implication to the ecological consequences in lower Yangtze region, Acta Geogr. Sin., 58, 659667.
  • Liu, J., J.-M. Chen, J. Cihlar, and W. Chen (2002), Net primary productivity mapped for Canada at 1-km resolution, Global Ecol. Biogeogr., 11, 115129.
  • Liu, J.-Y., M.-L. Liu, D.-F. Zhuang, Z.-X. Zhang, and X.-Z. Deng (2003), Study on spatial pattern of land-use change in China during 1995–2000, Sci. China, Ser. D, 46(4), 373384.
  • Lobell, D. B., J. A. Hicke, G. P. Asner, C. B. Field, C. J. Tucker, and S. O. Los (2002), Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–98, Global Change Biol., 8, 722735.
  • Los, S. O. (1988), Estimation of the ratio of sensor degradation between NOAA AVHRR channel 1 and 2 from monthly NDVI composites, IEEE Trans. Geosci. Remote Sens., 36, 202213.
  • Lucht, W., I. C. Prentice, R. B. Myneni, S. Sitch, P. Friedlingstein, W. Cramer, P. Bousquet, W. Buermann, and B. Smith (2002), Climatic control of the high-latitude vegetation greening trend and Pinatubo effect, Science, 296, 16871689.
  • Malmström, C. M., M. V. Thompson, G. P. Juday, S. O. Los, J. T. Randerson, and C. B. Field (1997), Interannual variation in global-scale net primary production: Testing model estimates, Global Biogeochem. Cycles, 11, 367392.
  • Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore, C. J. Vorosmarty, and A. L. Schloss (1993), Global climate change and terrestrial net primary production, Nature, 363, 234240.
  • Minnis, P., E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling, and W. L. Smith (1993), Radiative climate forcing by the Mount Pinatubo eruption, Science, 259, 14111415.
  • Monteith, J. L. (1977), Climate and efficiency of crop production in Britain, Trans. R. Soc. London, Ser. B, 281, 271294.
  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani (1997a), Increased plant growth in the northern high latitudes from 1981–1991, Nature, 386, 698702.
  • Myneni, R. B., R. R. Nemani, and S. W. Running (1997b), Estimation of global leaf area index and absorbed par using radiative transfer models, IEEE Trans. Geosci. Remote Sens., 35, 13801393.
  • Myneni, R. B., J. Dong, C. J. Tucker, R. K. Kaufmann, P. E. Kauppi, J. Liski, L. M. Zhou, V. Alexeyev, and M. K. Hughes (2001), A large carbon sink in the woody biomass of northern forests, Proc. Natl. Acad. Sci. U. S. A., 98, 14,78414,789.
  • Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running (2003), Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300, 15601563.
  • Ni, J. (2000), Net primary production, carbon storage and climate change in Chinese biomes, Nord. J. Bot., 20, 415426.
  • Pacala, S. W., et al. (2001), Consistent land- and atmosphere-based US carbon sink estimates, Science, 292, 23162320.
  • Parton, W. J., et al. (1993), Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide, Global Biogeochem. Cycles, 7, 785809.
  • Peng, C.-H., and M. J. Apps (1999), Modelling the response of net primary productivity (NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes, Ecol. Model., 122, 225238.
  • Piao, S.-L., J.-Y. Fang, L.-M. Zhou, Q.-H. Guo, M. Henderson, W. Ji, Y. Li, and S. Tao (2003), Interannual variations of monthly and seasonal NDVI in China from 1982 to 1999, J. Geophys. Res., 108(D14), 4401, doi:10.1029/2002JD002848.
  • Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A. Mooney, and S. A. Klooster (1993), Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochem. Cycles, 7, 811841.
  • Potter, C. S., S. Klooster, and V. Brooks (1999), Interannual variability in terrestrial net primary production: Exploration of trends and controls on regional to global scales, Ecosystems, 2, 3648.
  • Potter, C., S. Klooster, M. Steinbach, P. Tan, V. Kumar, S. Shekhar, R. Nemani, and R. Myneni (2003), Global teleconnections of climate to terrestrial carbon flux, J. Geophys. Res., 108(D17), 4556, doi:10.1029/2002JD002979.
  • Prince, S. D., and S. N. Goward (1995), Global net primary production: A remote sensing approach, J. Biogeogr., 22, 815835.
  • Qin, D.-H. (Ed.) (2002), Assessment on Environment of Western China (Synopsis), Science Press, Beijing.
  • Raich, J. W., E. B. Rastetter, and J. M. Melillo (1991), Potential net primary productivity in south America: Application of a global model, Ecol. Appl., 1, 399429.
  • Randerson, J. T., C. B. Field, I. Y. Fung, and P. P. Tans (1999), Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes, Geophys. Res. Lett., 26(17), 27652768.
  • Ruimy, A., B. Saugier, and G. Dedieu (1994), Methodology for the estimation of terrestrial net primary production from remotely sensed data, J. Geophys. Res., 99, 52635283.
  • Running, S. W., and E. R. Hunt (1993), Generalization of a forest ecosystem process model for other biomes Biome-BGC, and an application for global-scale modes: Scaling processes between leaf and landscape levels, in Scaling Physiological Processes: Leaf to Globe, edited by J. R. Ehleringer, and C. B. Field, pp. 141158, Elsevier, New York.
  • Schimel, D. S., et al. (2000), Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States, Science, 287, 20042006.
  • Schimel, D. S., et al. (2001), Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems, Nature, 414, 169172.
  • Schulze, E. D., C. Wirth, and M. C. Heimann (2000), Climate change—Managing forests after Kyoto, Science, 289, 20582059.
  • Shi, Y.-F., Y.-P. Shen, D.-L. Li, G.-W. Zhang, Y.-J. Ding, R.-J. Hu, and E.-S. Kang (2003), Discussion on the present climate change from warm-dry to warm-wet in northwest China, Quat. Sci., 23(2), 152164.
  • Slayback, D., J. Pinzon, S. Los, and C. J. Tucker (2003), Northern Hemisphere photosynthetic trends 1982–1999, Global Change Biol., 9, 115.
  • Stow, D. A., et al. (2004), Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems, Remote Sens. Environ., 89, 281308.
  • Stowe, L. L., R. M. Garey, and P. P. Pellegrino (1992), Monitoring the Mt. Pinatubo aerosol layer with NOAA/11AVHRR data, Geophys. Res. Lett., 19, 159162.
  • Thompson, M. V., J. T. Randerson, C. M. Malmström, and C. B. Field (1996), Change in net primary production and heterotrophic respiration: How much is necessary to sustain the terrestrial carbon sink? Global Biogeochem. Cycles, 10, 711726.
  • Tian, H.-Q., J. M. Melillo, D. W. Kicklighter, A. D. Mcguire, J. V. K. Helfrich, B. Moore, and C. J. Vorosmarty (1998), Effect of interannual climate variability on carbon storage in Amazonial ecosystems, Nature, 396, 664667.
  • Tucker, C. J., W. W. Newcomb, and A. E. Dregne (1994), AVHRR data sets for determination of desert spatial extent, Int. J. Remote Sens., 15, 35473566.
  • Tucker, C. J., D. Slayback, J. E. Pinzon, S. O. Los, R. B. Myneni, and M. G. Taylor (2001), Higher northern latitude NDVI and growing season trends from 1982 to 1999, Int. J. Biometeorol., 45, 184190.
  • Wang, S.-Q., H.-Q. Tian, J.-Y. Liu, D.-F. Zhuang, S.-W. Zhang, and W.-Y. Hu (2002), Characterization of changes in land cover and carbon storage in northeastern China: An analysis based on Landsat TM data, Sci. China, Ser. C, 45, S40S47.
  • Zhai, P.-M., A.-J. Sun, F.-M. Ren, X.-N. Liu, B. Gao, and Q. Zhang (1999), Chances of climate extremes in China, Clim. Change, 42, 203218.
  • Zhou, L.-M., C. J. Tucker, R. K. Kaufmann, D. Slayback, N. V. Shabanov, and R. B. Myneni (2001), Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999, J. Geophys. Res., 106(D17), 20,06920,083.
  • Zhou, L.-M., R. E. Dickinson, Y. Tian, M. Jin, K. Ogawa, H. Yu, and T. Schmugge (2003), A sensitivity study of climate and energy balance simulations with use of satellite-derived emissivity data over Northern Africa and the Arabian Peninsula, J. Geophys. Res., 108(D24), 4795, doi:10.1029/2003JD004083.
  • Zhou, Y.-L. (1997), Geography of the Vegetation in Northeast China, Science Press, Beijing.