SEARCH

SEARCH BY CITATION

References

  • Aber, J., R. P. Neilson, S. McNulty, J. M. Lenihan, D. Bachelet, and R. J. Drapek (2001), Forest processes and global environmental change: Predicting the effects of individual and multiple stressors, BioScience, 51, 735751.
  • Achard, F., H. D. Eva, P. Mayaux, H. J. Stibig, and A. Belward (2005), Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s, Global Biogeochem. Cycles, 18, GB2008, doi:10.1029/2003GB002142.
  • Andrews, J. A., and W. H. Schlesinger (2001), Soil CO2 dynamics, acidification and chemical weathering in a temperate forest with experimental CO2 enrichment, Global Biogeochem. Cycles, 15, 149162.
  • Andrews, J. A., K. G. Harrison, R. Matamala, and W. H. Schlesinger (1999), Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE), Soil Sci. Soc. Am. J., 63, 14291435.
  • Calfapietra, C., B. Gielen, A. N. J. Galema, M. Lukac, P. De Angelis, M. C. Moscatelli, R. Ceulemans, and G. Scarascia-Mugnozza (2003), Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation, Tree Physiol., 23, 805814.
  • Caspersen, J. P., S. W. Pacala, J. C. Jenkins, G. C. Hurtt, P. R. Moorcroft, and R. A. Birdsey (2000), Contribution of land-use history to carbon accumulation in U. S. forests, Science, 290, 11481151.
  • Ceulemans, R., I. A. Janssens, and M. E. Jach (1999), Effects of CO2 enrichment on trees and forests: Lessons to be learned in view of future ecosystem studies, Ann. Bot., 84, 577590.
  • Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, and J. Ni (2001), Measuring net primary production in forests: Concepts and field methods, Ecol. Appl., 11, 356370.
  • Clark, D. A., S. C. Piper, C. D. Keeling, and D. B. Clark (2003), Carbon dynamics linked to interannual temperature variation during 1984–2000, Proc. Natl. Acad. Sci. U. S. A., 100, 58525857.
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdel (2000), Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184187.
  • Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7, 357373.
  • Curtis, P. S. (1996), A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide, Plant Cell Environ., 19, 127137.
  • Curtis, P. S., and X. Z. Wang (1998), A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology, Oecologia, 113, 299313.
  • Davey, P. A., S. Hunt, G. J. Hymus, E. H. DeLucia, B. G. Drake, D. F. Karnosky, and S. P. Long (2003), Respiratory oxygen uptake is not decreased by an instantaneous elevated of [CO2], but is increased with long-term growth in the field at elevated [CO2], Plant Physiol., 134, 520527.
  • DeFries, R. S., R. A. Houghton, M. C. Hansen, C. B. Field, D. Skole, and J. Townsend (2002), Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s, Proc. Natl. Acad. Sci. U. S. A., 99, 14,25614,261.
  • DeLucia, E. H., et al. (1999), Net primary production of a forest ecosystem under experimental CO2 enrichment, Science, 284, 11771179.
  • DeLucia, E. H., K. George, and J. G. Hamilton (2002), Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide, Tree Physiol., 22, 10031010.
  • Edwards, N. T., and R. J. Norby (1999), Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature, Plant Soil, 206, 8597.
  • Edwards, N. T., T. J. Tschaplinski, and R. J. Norby (2002), Stem respiration increases in CO2- enriched sweetgum trees, New Phytol., 155, 239248.
  • Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takahashi, and P. Tans (1998), A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models, Science, 282, 442446.
  • Field, C. B. (2001), Plant physiology of the “missing” carbon sink, Plant Physiol., 125, 2528.
  • Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski (1998), Primary production of the biosphere: Integrating terrestrial and oceanic components, Science, 281, 237240.
  • Finzi, A. C., A. S. Allen, E. H. DeLucia, D. S. Ellsworth, and W. H. Schlesinger (2001), Forest litter production, chemistry, and decomposition following two-years of free-air CO2 enrichment, Ecology, 82, 470484.
  • Finzi, A. C., E. H. DeLucia, J. G. Hamilton, D. D. Richter, and W. H. Schlesinger (2002), The nitrogen budget of a pine forest under free air CO2 enrichment, Oecologia, 132, 567578.
  • George, K., R. J. Norby, J. G. Hamilton, and E. H. DeLucia (2003), Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2, New Phytol., 160, 511522.
  • Gielen, B., G. Scarascia-Mugnozza, and R. Ceulemans (2003a), Stem respiration of Populus species in the third year of free-air CO2 enrichment, Physiol. Plant., 117, 500507.
  • Gielen, B., M. Liberloo, J. Bogaert, C. Calfapietra, P. De Angelis, F. Miglietta, G. Scarascia-Mugnozza, and R. Ceulemans (2003b), Three years of free-air CO2 enrichment (POPFACE) only slightly affect profiles of light and leaf characteristics in closed canopies of Populus, Global Change Biol., 9, 10221037.
  • Hamilton, J. G., R. B. Thomas, and E. H. DeLucia (2001), Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem, Plant Cell Environ., 24, 975982.
  • Hamilton, J. G., E. H. DeLucia, K. George, S. L. Naidu, A. C. Finzi, and W. H. Schlesinger (2002), Forest carbon balance under elevated CO2, Oecologia, 131, 250260.
  • Hanson, P. J., N. T. Edwards, C. T. Garten, and J. A. Andrews (2000), Separating root and soil microbial contributions to soil respiration: A review of methods and observations, Biogeochemistry, 48, 115146.
  • Hendrey, G. R., and B. A. Kimball (1994), The FACE program, Agric. For. Meteorol., 70, 314.
  • Hendrey, G., D. Ellsworth, K. Lewn, and J. Nagy (1999), A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2, Global Change Biol., 5, 293309.
  • Houghton, R. A. (2003), Revised estimates of the annual net flux of carbon to the atmosphere from changes inland use and land management 1850–2000, Tellus, Ser. B, 55, 378390.
  • Idso, S. B. (1999), The long-term response of trees to atmospheric CO2 enrichment, Global Change Biol., 5, 493495.
  • IGBP Terrestrial Carbon Working Group (1998), The terrestrial carbon cycle: Implications for the Kyoto Protocol, Science, 280, 13931394.
  • Intergovernmental Panel on Climate Change (1996), Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
  • Intergovernmental Panel on Climate Change (2001), IPCC Third Assessment Report: Climate Change 2001, The Scientific Basis, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
  • Janssens, I. A., et al. (2003), Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions, Science, 300, 15381542.
  • Johnson, D. W., W. Cheng, J. D. Joslin, R. J. Norby, N. T. Edwards, and D. E. Todd Jr. (2004), Effects of elevated CO2 on nutrient cycling in a sweetgum plantation, Biogeochemistry, 69, 379403.
  • Joos, F., I. C. Prentice, and J. I. House (2002), Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: Consistent with US forest inventory data, Global Change Biol., 8, 299303.
  • Karnosky, D. F., et al. (2003), Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: A synthesis of molecular to ecosystem results from the Aspen FACE project, Funct. Ecol., 17, 289304.
  • Keever, C. (1950), Causes of succession on old fields of the Piedmont, North Carolina, Ecol. Monogr., 20, 231250.
  • Kelting, D. L., J. A. Burger, and G. S. Edwards (1998), Estimating root respiration, microbial respiration in the rhizosphere and root-free soil respiration in forest soils, Soil Biol. Biochem., 30, 961968.
  • Kimball, B. A., K. Kobayashi, and M. Bindi (2002), Responses of agricultural crops to free-air CO2 enrichment, Adv. Agron., 77, 293368.
  • King, J. S., P. J. Hanson, E. Bernhardt, P. DeAngelis, R. J. Norby, and K. S. Pregitzer (2004), A multi-year synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments, Global Change Biol., 10, 10271042.
  • Klironomos, J. N., M. F. Allen, M. C. Rillig, J. Piotrowski, S. Makvandi-Nejad, B. E. Wolfe, and J. R. Powell (2005), Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system, Nature, 433, 621624.
  • Knepp, R. G., J. G. Hamilton, J. E. Mohan, A. R. Zangerl, M. R. Berenbaum, and E. H. DeLucia (2005), Elevated CO2 reduces leaf damage by insect herbivores in a forest community, Ecol. Entomol., 20.222/j.2469-8137.2005.01399.x, in press.
  • LaDeau, S. L., and J. S. Clark (2001), Rising CO2 levels and the fecundity of forest trees, Science, 292, 9598.
  • Long, S. P. (1991), Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations—Has its importance been underestimated? Plant Cell Environ., 14, 729739.
  • Long, S. P., and B. G. Drake (1992), Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations, in Crop Photosynthesis: Spatial and Temporal Determinants, Topics Photosynth., vol. 2, edited by N. R. Baker, and H. Thomas, pp. 69107, Elsevier, New York.
  • Luo, Y., L. W. White, J. G. Canadell, E. H. DeLucia, D. S. Ellsworth, A. Finzi, J. Lichter, and W. H. Schlesinger (2003), Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach, Global Biogeochem. Cycles, 17(1), 1021, doi:10.1029/2002GB001923.
  • Luo, Y., et al. (2004), Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide, BioScience, 54, 731739.
  • Matamala, R., M. A. Gonzalez-Meler, J. D. Jastrow, R. J. Norby, and W. H. Schlesinger (2003), Impacts of fine root turnover on forest NPP and soil C sequestration potential, Science, 302, 13851387.
  • McGuire, A. D., et al. (2001), Carbon balance of terrestrial biosphere in the twentieth century: Analysis of CO2, climate, and land-use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 15, 183206.
  • McLeod, A. R., and S. P. Long (1999), Free-air carbon dioxide enrichment (FACE) in global change research: A review, Adv. Ecol. Res., 28, 155.
  • McNulty, S. G., J. M. Vose, and W. T. Swank (1997), Regional hydrologic response of loblolly pine to air temperature and precipitation changes, J. Am. Water Resour. Assoc., 33, 10111022.
  • Miglietta, F., M. R. Hoosbeek, J. Foot, F. Gigon, A. Hassinen, M. Heigmans, A. Peressotti, T. Saarinen, N. Van Breemen, and B. Wallen (2001), Spatial and temporal performance of a miniFACE (Free Air CO2 Enrichment) system on bog ecosystems in northern and central Europe, Environ. Monit. Assess., 66, 107127.
  • Myers, D. A., R. B. Thomas, and E. H. DeLucia (1999), Photosynthetic capacity of loblolly pine (Pinus taeda L.) trees during the first year of carbon dioxide enrichment in a forest ecosystem, Plant Cell Environ., 22, 473481.
  • Naidu, S. L., and E. H. DeLucia (1999), First-year growth response of trees in an intact forest exposed to elevated CO2, Global Change Biol., 5, 609614.
  • Norby, R. J. (1996), Forest canopy productivity index, Nature, 381, 564.
  • Norby, R. J., S. D. Wullschleger, C. A. Gunderson, D. W. Johnson, and R. Ceulemans (1999), Tree responses to rising CO2 in field experiments: Implications for the future forest, Plant Cell Environ., 22, 682714.
  • Norby, R. J., D. E. Todd, J. Fults, and D. W. Johnson (2001), Allometric determination of tree growth in a CO2-enriched sweetgum stand, New Phytol., 150, 477487.
  • Norby, R. J., et al. (2002), Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage, Ecol. Appl., 12, 12611266.
  • Norby, R. J., J. D. Sholtis, C. A. Gunderson, and S. S. Jawdy (2003), Leaf dynamics of a deciduous forest canopy: No response to elevated CO2, Oecologia, 136, 574584.
  • Norby, R. J., J. Ledford, C. D. Reilly, N. E. Miller, and E. G. O'Neill (2004), Fine root production dominates response of a deciduous forest to atmospheric CO2 enrichment, Proc. Natl. Acad. Sci. U. S. A., 101, 96899693.
  • Nowak, R. S., D. S. Ellsworth, and S. D. Smith (2004), Functional responses of plants to elevated atmospheric CO2—Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol., 162, 253280.
  • Okada, M., M. Lieffering, H. Nakamura, M. Yoshimoto, H. Y. Kim, and K. Kobayashi (2001), Free-air CO2 enrichment (FACE) using pure CO2 injection: System description, New Phytol., 150, 251260.
  • Oren, R., et al. (2001), Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere, Nature, 411, 469472.
  • Pacala, S. W., et al. (2001), Consistent land- and atmosphere-based U.S. carbon sink estimates, Science, 292, 23162320.
  • Phillips, R. L., D. R. Zak, and W. E. Holmes (2002), Microbial community composition and function beneath temperate trees exposed to elevated atmospheric CO2 and O3, Oecologia, 131, 236244.
  • Prentice, I. C., et al. (2001), The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., pp. 183238, Cambridge Univ. Press, New York.
  • Sabine, C. L., et al. (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367371.
  • Schäfer, K. V. R., R. Oren, D. S. Ellsworth, C.-T. Lai, J. D. Herrick, A. C. Finzi, D. D. Richter, and G. Katul (2003), Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem, Global Change Biol., 9, 13781400.
  • Schimel, D. S., et al. (2000), Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States, Science, 287, 20042006.
  • Schimel, D. S., et al. (2001), Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems, Nature, 414, 169172.
  • Schlesinger, W. H. (1997), Biogeochemistry: An Analysis of Global Change, 588 pp., Elsevier, New York.
  • Schlesinger, W. H., and J. Lichter (2001), Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2, Nature, 411, 466469.
  • Sionit, N., and P. J. Kramer (1986), Woody plant reactions to CO2 enrichment, in Carbon Dioxide Enrichment of Greenhouse Crops, vol. 2, pp. 6985, CRC Press, Boca Raton, Fla.
  • Tissue, D. T., J. D. Lewis, S. D. Wullschleger, J. S. Amthor, K. L. Griffen, and R. Anderson (2002), Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field, Tree Physiol., 22, 11571166.
  • Whittaker, R. H. (1975), Communities and Ecosystems, 2nd ed., 385 pp., MacMillan, New York.
  • Zak, D. R., K. S. Pregitzer, P. S. Curtis, J. A. Teeri, R. Fogel, and D. L. Randlett (1993), Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles, Plant Soil, 151, 105117.
  • Zak, D. R., W. E. Homes, A. C. Finzi, R. J. Norby, and W. H. Schlesinger (2003), Soil nitrogen cycling under elevated CO2: A synthesis of forest FACE experiments, Ecol. Appl., 13, 15081514.