SEARCH

SEARCH BY CITATION

References

  • Achard, F., H. D. Eva, H. J. Stibig, P. Mayaux, J. Gallego, T. Richards, and J. P. Malingreau (2002), Determination of deforestation rates of the world's humid tropical forests, Science, 297, 9991002.
  • Bacastow, R. B., and C. D. Keeling (1973), Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from A.D. 1700 to 2070 as deduced from a geochemical model, in Carbon and the Biosphere, edited by G. Woodwell, and E. Pecan, pp. 86134, U.S. Atomic Energy Comm., Washington, D. C.
  • Batjes, N. H. (1996), Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 47, 151163.
  • Bolin, B., R. Sukumar, P. Ciais, W. Cramer, P. Jarvis, H. Kheshgi, C. Nobre, S. Semenov, and W. Steffen (2000), Global perspective, in Land Use, Land-Use Change, and Forestry: A Special Report of the IPCC, edited by R. T. Watson et al., pp. 2351, Cambridge Univ. Press, New York.
  • Bousquet, P., P. Peylin, P. Ciais, C. Le Quéré, P. Friedlingstein, and P. P. Tans (2000), Regional changes of CO2 fluxes over land and oceans since 1980, Science, 290, 13421346.
  • Cramer, W., et al. (1999), Comparing global models of terrestrial net primary productivity (NPP): Overview and key results, Global Change Biol., 5, 115.
  • Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7, 357373.
  • Davidson, E. A., and I. L. Ackerman (1993), Changes in soil carbon inventories following cultivation of previously untilled soils, Biogeochemistry, 20, 161193.
  • DeFries, R. S., R. A. Houghton, M. C. Hansen, C. B. Field, D. Skole, and J. Townshend (2002), Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s, Proc. Natl. Acad. Sci. U. S. A., 99(22), 14,25614,261.
  • Enting, I. G., T. M. L. Wigley, and M. Heimann (Eds.) (1994), Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analyses, Tech. Pap. 31, CSIRO Div. of Atmos. Res., Melbourne, Victoria, Australia.
  • Eswaren, H., E. van der Berg, and P. Reich (1993), Organic carbon in soils of the world, Soil Sci. Soc. Am. J., 57, 192194.
  • Farquhar, G. D., and S. von Caemmerer (1982), Modelling of photosynthetic response to environmental conditions, in Encyclopedia of Plant Physiology: New Series, vol. 12B, Physiological Plant Ecology II: Water Relations and Carbon Assimilation, edited by O. L. Lange et al., pp. 549588, Springer, New York.
  • Friedli, H., H. Lötscher, H. Oeschger, U. Siegenthaler, and B. Stauffer (1986), Ice core record of 13C/12C ratio of atmospheric CO2 in the past two centuries, Nature, 324, 237238.
  • Gates, D. M. (1985), Global biospheric response to increasing atmospheric carbon dioxide concentration, in Direct Effects of Increasing Carbon Dioxide on Vegetation, edited by B. R. Strain, and J. D. Cure, DOE/ER-0238, pp. 171184, Carbon Dioxide Res. Div., U.S. Dep. of Energy, Washington, D. C.
  • Gitz, V., and P. Ciais (2003), Amplifying effects of land-use change on atmospheric CO2 levels, Global Biogeochem. Cycles, 17(1), 1024, doi:10.1029/2002GB001963.
  • Haxeltine, A., and I. C. Prentice (1996), BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types, Global Biogeochem. Cycles, 10, 693709.
  • Houghton, R. A. (1999), The annual net flux of carbon to the atmosphere from changes in land use 1850–1990, Tellus, Ser. B, 51, 298313.
  • Houghton, R. A. (2000), A new estimate of global sources and sinks of carbon from land-use change, Eos Trans. AGU, 81(19), Suppl. S281.
  • Houghton, R. A. (2003), Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use 1850–2000, Tellus, Ser. B, 55, 378390.
  • Houghton, R. A., and J. L. Hackler (1999), Emissions of carbon from forestry and land-use change in tropical Asia, Global Change Biol., 5, 481492.
  • Houghton, R. A., and J. L. Hackler (2001), Carbon flux to the atmosphere from land-use changes: 1850 to 1990, ORNL/CDIAC-131, 86 pp., Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn. (Available at http://cdiac.esd.ornl.gov/ndps/ndp050.html).
  • Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, and G. M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980—A net release of CO2 to the atmosphere, Ecol. Monogr., 53, 235262.
  • Houghton, R. A., J. L. Hackler, and K. T. Lawrence (1999), The US carbon budget: Contributions from land-use change, Science, 285, 574578.
  • House, J. I., I. C. Prentice, N. Ramankutty, R. A. Houghton, and M. Heimann (2003), Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks, Tellus, Ser. B, 55, 345363.
  • Jain, A. K., and K. A. S. Hayhoe (2003), Global air pollution problems, in Handbook of Atmospheric Sciences, edited by C. N. Hewitt, and A. V. Jackson, pp. 339371, Blackwell Sci., Malden, Mass.
  • Jain, A. K., H. S. Kheshgi, M. I. Hoffert, and D. J. Wuebbles (1995), Distribution of radiocarbon as a test of global carbon-cycle models, Global Biogeochem. Cycles, 9, 153166.
  • Jain, A. K., H. S. Kheshgi, and D. J. Wuebbles (1996), A globally aggregated reconstruction of cycles of carbon and its isotopes, Tellus, Ser. B, 48, 583600.
  • Jain, A. K., H. S. Kheshgi, and D. J. Wuebbles (1997), Is there an imbalance in the global budget of bomb-produced radiocarbon? J. Geophys. Res., 102, 13271333.
  • Jenkinson, D. S. (1990), The turnover of organic carbon and nitrogen in soil, Philos. Trans. R. Soc. London, Ser. B, 329, 361368.
  • Jobbagy, E., and R. B. Jackson (2000), The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecol. Appl., 10(2), 423436.
  • Keeling, C. D., and T. P. Whorf (2000), Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change, pp. 128, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Keeling, C. D., R. B. Bacastow, and T. P. Whorf (1982), Measurements of the concentration of carbon dioxide at Mauna Loa Observatory, Hawaii, in Carbon Dioxide Review: 1982, edited by W. C. Clark, pp. 377385, Oxford Univ. Press, New York.
  • Kheshgi, H. S., and A. K. Jain (2003), Projecting future climate change: Implications of carbon cycle model intercomparison, Global Biogeochem. Cycles, 17(2), 1047, doi:10.1029/2001GB001842.
  • Kheshgi, H. S., A. K. Jain, and D. J. Wuebbles (1996), Accounting for the missing carbon sink with the CO2 fertilization effect, Clim. Change, 33, 3162.
  • Kheshgi, H. S., A. K. Jain, and D. J. Wuebbles (1999), The global carbon budget and its uncertainty derived from carbon dioxide and carbon isotopes, J. Geophys. Res., 104, 31,12731,144.
  • King, A. W., W. R. Emanuel, S. D. Wullschleger, and W. M. Post (1995), In search of the missing carbon sink: A model of terrestrial biospheric response to land-use change and atmospheric CO2, Tellus, Ser. B, 47, 501519.
  • Klein Goldewijk, C. G. M. (2001), Estimating global land use change over the past 300 years: The HYDE 2.0 database, Global Biogeochem. Cycles, 15, 417433.
  • Loveland, T. R., and A. S. Belward (1997), The IGBP-DIS global 1 km land cover data set, DISCover: First results, Int. J. Remote Sens., 18, 32913295.
  • Marland, G., et al. (2003), The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy, Clim. Policy, 3, 149157.
  • McGuire, A. D., et al. (2001), Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 15(1), 183206.
  • Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore III, C. J. Vorosmarty, and A. L. Schloss (1993), Global climate change and terrestrial net primary production, Nature, 363, 234239.
  • Neftel, A., E. Moor, H. Oeschger, and B. Stauffer (1985), Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature, 315, 4547.
  • Pacala, S. W. (2001), Consistent land- and atmosphere-based US carbon sink estimates, Science, 292, 23162320.
  • Pastor, J., and W. M. Post (1985), Development of a linked forest productivity-soil process model, Tech. Rep. ORNL/TM-9519, Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Polglase, P. J., and Y. P. Wang (1992), Potential CO2-enhanced carbon storage by the terrestrial biosphere, Aust. J. Bot., 40, 641656.
  • Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Stangenberger (1982), Soil carbon pools and world life zones, Nature, 298, 156159.
  • Post, W. M., A. W. King, and S. D. Wullschleger (1997), Historical variations in terrestrial biospheric carbon storage, Global Biogeochem. Cycles, 11, 99110.
  • Prentice, C., G. Farquhar, M. Fasham, M. Goulden, M. Heimann, V. Jaramillo, H. Kheshgi, C. L. Quéré, R. Scholes, and D. Wallace (2001), The carbon cycle and atmospheric CO2, in Climate Change 2001: The Scientific Basis: Contribution of WGI to the Third Assessment Report of the IPCC, edited by J. T. Houghton et al., pp. 183237, Cambridge Univ. Press, New York.
  • Ramankutty, N., and J. Foley (1998), Characterizing patterns of global land use: An analysis of global croplands data, Global Biogeochem. Cycles, 12, 667685.
  • Ramankutty, N., and J. A. Foley (1999), Estimating historical changes in global land cover: Croplands from 1700 to 1992, Global Biogeochem. Cycles, 13, 9971027.
  • Ramankutty, N., J. A. Foley, and N. J. Olejniczak (2002), People on the land: Changes in global population and cropland during the 20th century, Ambio, 31, 251257.
  • Rawls, W. J., D. L. Brakensiek, and K. E. Saxton (1982), Estimation of soil water properties, Trans. ASAE, 25, 13161328.
  • Ryan, M. G., R. M. Hubbard, S. Pongracic, R. J. Raison, and R. E. McMurtrie(1996), Autotrophic respiration in Pinus radiate in relation to nutrient status, Tree Physiol., 16, 333343.
  • Ryan, M. G., M. B. Lavigne, and S. T. Gower (1997), Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate, J. Geophys. Res., 102, 28,87128,883.
  • Schimel, D., D. Alves, I. Enting, M. Heimann, F. Joos, D. Raynaud, and T. Wigley (1996), CO2 and the carbon cycle, in Climate Change 1995: The Science of Climate Change: Contribution of WGI to the Second Assessment Report of the IPCC, edited by J. T. Houghton et al., pp. 6586, Cambridge Univ. Press, New York.
  • Schimel, D. S., et al. (2001), Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems, Nature, 414, 169172.
  • Schlesinger, W. H. (1997), Biogeochemistry: An Analysis of Global Change, 543 pp., Elsevier, New York.
  • Thornthwaite, C. W., and J. R. Mather (1957), Instructions and tables for computing potential evapotranspiration and the water balance, Publ. Climatol., 10, 183311.
  • United Nations Framework Convention on Climate Change (1997), Kyoto Protocol to the United Nations Framework Convention on Climate Change, FCCC/CP/1997/L.7/Add. 1, Bonn, Germany.
  • Webb, R. S., C. E. Rosenzweig, and E. R. Levine (1991), A global data set of soil particle size properties, NASA Tech. Memo., 4286, 34 pp.
  • Zhu, Z., and E. Waller (2003), Global forest cover mapping for the United Nations Food and Agriculture Organization Forest Resources Assessment 2000 Program, For. Sci., 49, 369380.
  • Zobler, L. (1986), A world soil file for global climate modelling, NASA Tech. Memo., 87802, 32 pp.
  • Zobler, L. (1999), Global Soil Types, 1-Degree Grid (Zobler), data set, Distrib. Active Arch. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn. (Available at http://www.daac.ornl.gov).