SEARCH

SEARCH BY CITATION

References

  • Aller, R. C. (1994), Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation, Chem. Geol., 114, 331345.
  • Aller, R. C. (1998), Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors, Mar. Chem., 61, 143155.
  • Aller, R. C. (2004), Conceptual models of early diagenetic processes: The muddy seafloor as an unsteady, batch reactor, J. Mar. Res., 62, 815835.
  • Aller, R. C., and N. E. Blair (2004), Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): Net loss of terrestrial C and diagenetic fractionation of C isotopes, Geochim. Cosmochim. Acta, 68, 18151825.
  • Aller, R. C., N. C. Blair, Q. Xia, and P. D. Rude (1996), Remineralization rates, recycling and storage of carbon in Amazon shelf sediments, Cont. Shelf Res., 16, 753786.
  • Aller, R. C., A. Hannides, C. Heilbrun, and C. Panzeca (2004), Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments: The Gulf of Papua deltaic complex, Cont. Shelf. Res., 24, 24552486.
  • Berner, R. A. (1989), Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time, Paleogeogr. Paleoclimatol. Paleoecol., 75, 97122.
  • Berner, E. K., and R. A. Berner (1996), Global Environment: Water, Air, and Geochemical Cycles, Prentice-Hall, Upper Saddle River, N. J.
  • Bianchi, T. S., S. Mitra, and B. A. McKee (2002), Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: Implications for differential sedimentation and transport at the coastal margin, Mar. Chem., 77, 211223.
  • Blair, N. E., E. L. Leithold, S. T. Ford, K. A. Peeler, J. C. Holmes, and D. W. Perkey (2003), The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system, Geochim. Cosmochim. Acta, 67, 6373.
  • Blair, N. E., E. L. Leithold, and R. C. Aller (2004), From bedrock to burial: the evolution of particulate organic carbon across coupled watershed-continental margin systems, Mar. Chem., 92, 141156.
  • Burdige, D. J. (1991), The kinetics of organic matter mineralization in anoxic marine sediments, J. Mar. Res., 49, 727761.
  • Canfield, D. E. (1994), Factors influencing organic matter preservation in marine sediments, Chem. Geol., 114, 315329.
  • Cowie, G. L., J. I. Hedges, and S. E. Calvert (1992), Sources and reactivity of amino acids, neutral sugars, and lignin in an intermittently anoxic marine environment, Geochim. Cosmochim. Acta, 56, 19631978.
  • Degens, E. T. (1969), Biogeochemistry of stable carbon isotopes, in Organic Geochemistry, edited by G. Eglinton, and M. T. J. Murphy, pp. 304329, Springer, New York.
  • DeMaster, D. J., and R. C. Aller (2001), Biogeochemical processes on the Amazon shelf: Changes in dissolved and particulate fluxes during river/ocean mixing, in The Biogeochemistry of the Amazon Basin, edited by M. E. McClain, R. L. Victoria, and J. E. Richey, pp. 328357, Oxford Univ. Press, New York.
  • Emerson, S., and J. I. Hedges (1988), Processes controlling the organic carbon content of open ocean sediments, Paleoceanography, 3, 621634.
  • Fogel, M. L., and L. A. Cifuentes (1993), Isotope fractionation during primary production, in Organic Geochemistry, edited by S. A. Macko, and M. H. Engel, pp. 7398, Springer, New York.
  • Goñi, M. A. (1997), Records of terrestrial organic matter composition in Amazon Fan sediments, in Proceedings of the Ocean Drilling Program, Scientific Results, vol. 155, edited by R. D. Flood, D. J. W. Piper, and L. C. Peterson, pp. 519530, Ocean Drill. Program, College Station, Tex.
  • Goñi, M. A., K. C. Ruttenberg, and T. I. Eglinton (1998), A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico, Geochim. Cosmochim. Acta, 62, 30553075.
  • Gordon, E. S., and M. A. Goñi (2003), Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico, Geochim. Cosmochim. Acta, 67, 23592375.
  • Gordon, E. S., and M. A. Goñi (2004), Controls on the distribution of and accumulation of terrigenous organic matter in sediments from the Mississippi and Atchafalaya river margins, Mar. Chem., 92, 331352.
  • Gough, M. A., R. Fauzi, C. Mantoura, and M. Preston (1993), Terrestrial plant biopolymers in marine sediments, Geochim. Cosmochim. Acta, 57, 945964.
  • Hedges, J. I. (1992), Global biogeochemical cycles: Progress and problems, Mar. Chem., 39, 6793.
  • Hedges, J. I. (2002), Sedimentary organic matter preservation and atmospheric O2 regulation, in Chemistry of Marine Water and Sediments, edited by A. Gianguzza, E. Pelizzetti, and S. Sammartano, pp. 105123, Springer, New York.
  • Hedges, J. I., and R. G. Keil (1995), Sedimentary organic matter preservation: an assessment and speculative synthesis, Mar. Chem., 49, 81115.
  • Hedges, J. I., R. G. Keil, and R. Benner (1997), What happens to terrestrial organic matter in the ocean? Org. Geochem., 27, 195212.
  • Hedges, J. I., F. S. Hu, A. H. Devol, H. E. Hartnett, E. Tsamakis, and R. G. Keil (1999a), Sedimentary organic matter preservation: A test for selective degradation under oxic conditions, Am. J. Sci., 299, 529555.
  • Hedges, J. I., R. G. Keil, C. Lee, and S. G. Wakeham (1999b), Invited lecture: Atmospheric O2 control by a ‘mineral conveyor belt’ linking the continents and ocean, in Geochemistry of the Earth's Surface: Proceedings of the 5th International Symposium on the Geochemistry of the Earth's Surface, edited by H. Ármannsson, pp. 241244, A. A. Balkema, Brookfield, Vt.
  • Henrichs, S. M., and W. S. Reeburgh (1987), Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy, Geomicrobiol. J., 5, 191237.
  • Hopmans, E. C., J. W. H. Weijers, E. Schefuß, L. Herfort, J. S. Sinninghe Damsté, and S. Schouten (2004), A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids, Earth Planet. Sci. Lett., 224, 107116.
  • Keil, R. G., E. Tsamakis, C. B. Fuh, C. Giddings, and J. I. Hedges (1994), Mineralogical and textural controls on organic composition of coastal marine sediments: hydrodynamic separation using SPLITT fractionation, Geochim. Cosmochim. Acta, 58, 879893.
  • Keil, R. G., L. M. Mayer, P. D. Quay, J. E. Richey, and J. I. Hedges (1997a), Loss of organic matter from riverine particles in deltas, Geochim. Cosmochim. Acta, 61, 15071511.
  • Keil, R. G., E. C. Tsamakis, N. Wolf, J. I. Hedges, and M. A. Goñi (1997b), Relationships between organic carbon preservation and mineral surface area in Amazon Fan sediments (Holes 932A and 942A), in Proceedings of the Ocean Drilling Program, Scientific Results, vol. 155, edited by R. D. Flood, D. J. W. Piper, and L. C. Peterson, pp. 531538, Ocean Drill. Program, College Station, Tex.
  • Keil, R. G., E. Tsamakis, J. C. Giddings, and J. I. Hedges (1998), Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern sediments from the Washington coast, Geochim. Cosmochim. Acta, 62, 13471364.
  • Liu, K.-K., K. Iseki, and S.-Y. Chao (2000), Continental margin carbon fluxes, in The Changing Ocean Carbon Cycle, edited by R. B. Hanson, H. W. Ducklow, and J. G. Field, pp. 187240, Cambridge Univ. Press, New York.
  • Ludwig, W., and J.-L. Probst (1996), Predicting the input of organic carbon by continental erosion, Global Biogeochem. Cycles, 10, 2341.
  • Masiello, C. A., and E. R. M. Druffel (2001), Carbon isotope geochemistry of the Santa Clara River, Global Biogeochem. Cycles, 15, 407416.
  • Mayer, L. M. (1994a), Relationships between mineral surfaces and organic carbon concentrations in soils and sediments, Chem. Geol., 114, 347363.
  • Mayer, L. M. (1994b), Surface area control of organic carbon accumulation in continental margin sediments, Geochim. Cosmochim. Acta, 58, 12711284.
  • Mayer, L. M., R. G. Keil, S. A. Macko, S. B. Joye, K. C. Ruttenberg, and R. C. Aller (1998), Importance of suspended particulates in riverine delivery of bioavailable nitrogen to coastal zones, Global Biogeochem. Cycles, 12, 573579.
  • McKee, B. A., R. C. Aller, M. A. Allison, T. S. Bianchi, and G. C. Kineke (2004), Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes, Cont. Shelf. Res., 24, 899926.
  • Michalopoulos, P., and R. C. Aller (2004), Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay formation, and storage, Geochim. Cosmochim. Acta, 68, 10611085.
  • Newman, J. W., P. L. Parker, and E. W. Behrens (1973), Organic carbon ratios in Quaternary cores from the Gulf of Mexico, Geochim. Cosmochim. Acta, 37, 225238.
  • Onstad, G. D., D. E. Canfield, P. D. Quay, and J. I. Hedges (2000), Sources of particulate organic matter in rivers from the continental USA: Lignin phenol and stable carbon isotope compositions, Geochim. Cosmochim. Acta, 64, 35393546.
  • Prahl, F. G. (1985), Chemical evidence of differential particle dispersal in the southern Washington coastal environment, Geochim. Cosmochim. Acta, 49, 25332539.
  • Prahl, F. G., J. R. Ertel, M. A. Goni, M. A. Sparrow, and B. Eversmeyer (1994), Terrestrial organic carbon contributions to sediments on the Washington margin, Geochim. Cosmochim. Acta, 58, 30353048.
  • Prahl, F. G., G. H. de Lange, S. Scholten, and G. L. Cowie (1997), A case of post-depositional aerobic degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal Plain, Org. Geochem., 27, 141152.
  • Schink, B. (1988), Principles and limits of anaerobic degradation: environmental and technological aspects, in Biology of Anaerobic Microorganisms, edited by A. J. B. Zehnder, John Wiley, Hoboken, N. J.
  • Schlünz, B., and R. R. Schneider (2000), Transport of terrestrial organic carbon to the oceans by rivers: Re-estimating flux- and burial rates, Int. J. Earth Sci., 88, 599606.
  • Sigman, D. M., and E. A. Boyle (2000), Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859869.