SEARCH

SEARCH BY CITATION

References

  • Anderson, L. A., and J. L. Sarmiento (1994), Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8, 6580.
  • Barnes, R. O., and E. D. Goldberg (1976), Methane production and consumption in anaerobic sediments, Geology, 4, 297300.
  • Boetius, A., and E. Suess (2004), Hydrate Ridge: A natural laboratory for the study of microbial life fueled by methane from near surface gas hydrates, Chem. Geol., 205(3–4), 291310.
  • Boetius, A., K. Ravenschlag, C. J. Schubert, D. Rickert, F. Widdel, A. Gieseke, R. Ammann, B. B. Jørgensen, U. Witte, and O. Pfannkuche (2000), A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, 623626.
  • Boudreau, B. P. (1996), A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments, Comput. Geosci., 22(5), 479496.
  • Cai, W.-J., and C. E. Reimers (1995), Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean, Deep Sea Res., 42, 16811699.
  • Dickens, G. R. (1999), The blast in the past, Nature, 401, 752753.
  • Fisher, C. R., I. R. MacDonald, R. Sassen, C. M. Young, S. A. Macko, S. Hourdez, R. S. Carney, S. Joye, and E. McMullin (2000), Methane ice worms: Hesiocaeca methanicola colonising fossil fuel reserves, Naturwissenschaften, 87, 184187.
  • Gieskes, J. M., T. Garno, and H. Brumsack (1991), Chemical methods for interstitial water analysis aboard Joides Resolution, Tech. Note 15, Ocean Drill. Program, College Station, Tex.
  • Glud, R. N., J. K. G. Gundersen, and O. Holby (1999), Benthic in situ respiration in the upwelling area off central Chile, Mar. Ecol. Prog. Ser., 186, 918.
  • Glud, R. N., and N. Blackburn (2002), The effect of chamber size on benthic oxygen uptake measurements: A simulation study, Ophelia, 56, 2331.
  • Grasshoff, K., M. Ehrhardt, and K. Kremmling (1983), Methods of Seawater Analysis, 419 pp., Verlag Chemie GmbH, Weinheim, Germany.
  • Greinert, J., G. Bohrmann, and E. Suess (2001), Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: Classification, distribution, and origin of authigenic lithologies, in Natural Gas Hydrates: Occurrence, Distribution and Detection, Geophys. Monogr. Ser., vol. 124, edited by C. K. Paull, and W. P. Dillon, pp. 99113, AGU, Washington, D. C.
  • Gust, G. (1990), Method of generating precisely-defined wall shearing stresses, Patent 4,973165, U.S. Patent and Trademark Off., Washington, D. C.
  • Hales, B., and S. Emerson (1997), Evidence in support of first-order dissolution kinetics of calcite in seawater, Earth. Planet. Sci. Lett., 148, 317327.
  • Heeschen, K. U., R. W. Collier, M. A. de Angelis, E. Suess, G. Rehder, P. Linke, and G. P. Klinkhammer (2005), Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadia Margin, Global Biogeochem. Cycles, 19, GB2016, doi:10.1029/2004GB002266.
  • Heyer, J. (1990), Der Kreislauf des Methans, 250 pp., Akademie, Berlin.
  • Hinrichs, K. U., and A. Boetius (2002), The anaerobic oxidation of methane: New insights in microbial ecology and biogeochemistry, in Ocean Margin Systems, edited by G. Wefer et al., pp. 457477, Springer, New York.
  • Hinrichs, K. U., L. R. Hmelo, and S. P. Sylva (2003), Molecular fossil record of elevated methane levels in late Pleistocene coastal waters, Science, 299, 12141217.
  • Hoehler, T. M., M. J. Alperin, D. B. Albert, and C. S. Martens (1994), Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for methanogen-sulphate reducer consortium, Global Biogeochem. Cycles, 8, 451463.
  • Ivanenkov, V. N., and Y. I. Lyakhin (1978), Determination of total alkalinity in seawater, in Methods of Hydrochemical Investigations in the Ocean, edited by O. K. Bordovsky, and V. N. Ivanenkov, pp. 110114, Nauka, Moscow.
  • Joos, F., G. K. Plattner, T. F. Stocker, A. Körtzinger, and D. W. R. Wallace (2003), Trends in marine dissolved oxygen: Implications for ocean circulation changes and the carbon budget, Eos Trans. AGU, 84, 197204.
  • Kennett, J. P., K. G. Cannariato, I. L. Hendy, and R. J. Behl (2000), Carbon isotope evidence for methane hydrate instability during Quaternary interstadials, Science, 288, 128133.
  • Knittel, K., A. Boetius, A. Lembke, H. Eilers, K. Lochte, O. Pfannkuche, P. Linke, and R. Amann (2003), Activity, distribution and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin Oregon), Geomicrobiol. J., 20, 269294.
  • Levin, L. A., W. Ziebis, G. F. Mendoza, V. A. Growney, M. D. Tyron, K. M. Brown, C. Mahn, J. M. Gieskes, and A. E. Rathburn (2003), Spatial heterogeneity of macrofauna at northern California methane seeps: Influence of sulfide concentration and fluid flow, Mar. Ecol. Prog. Ser., 265, 123139.
  • Linke, P., E. Suess, M. E. Torres, V. Martens, W. D. Rugh, W. Ziebis, and L. D. Kulm (1994), In situ measurements of fluid flow from cold seeps at active continental margins, Deep Sea Res., Part I, 41, 721739.
  • Linke, P., K. Wallmann, E. Suess, C. Hensen, and G. Rehder (2005), In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin, Earth Planet. Sci. Lett., 235, 7995.
  • Luff, R., and K. Wallmann (2003), Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia margin: Numerical modelling and mass balances, Geochim. Cosmochim. Acta, 67, 34033421.
  • Luff, R., M. Haeckel, and K. Wallmann (2001), Robust and fast FORTRAN and MATLAB libraries to calculate pH distributions in marine systems, Comput. Geosci., 27, 157169.
  • Luff, R., K. Wallmann, and G. Aloisi (2004), Numerical modeling of carbonate crust formation at cold vent sites: Significance for fluid and methane budgets and chemosynthetic biological communities, Earth Planet. Sci. Lett., 221, 337353.
  • MacDonald, I. R., W. W. Sager, and M. B. Peccini (2003), Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico, Mar. Geol., 198, 133158.
  • Martens, C. S., and R. A. Berner (1977), Interstitial water chemistry of Long Island Sound sediments: I. Dissolved gases, Limnol. Oceanogr., 22, 1025.
  • Milkov, A. V. (2004), Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth Sci. Rev., 66, 183197.
  • Morse, J. W., G. Boland, and G. T. Rowe (1999), A “gilled” benthic chamber for extended measurement of sediment-water fluxes, Mar. Chem., 66, 225230.
  • Olu, K., S. Lance, M. Sibuet, P. Henry, A. Fiala-Médioni, and A. Dinet (1997), Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism, Deep Sea Res., Part I, 44(5), 811841.
  • Orphan, V. J., K. U. Hinrichs, W. Ussler III, C. K. Paull, L. T. Taylor, S. P. Syla, J. M. Hayes, and F. F. DeLong (2001a), Comparative analysis of methane oxidizing archea and sulfate-reducing bacteria in anoxic marine sediments, Appl. Environ. Microbiol., 67(4), 19221934.
  • Orphan, V. J., C. H. House, K. U. Hinrichs, K. D. MCKeegan, and E. F. Delong (2001b), Methane-consuming archea revealed by directly coupled isotopic and phylogenetic analysis, Science, 293, 484487.
  • Reeburgh, W. S. (1976), Methane consumption in Cariaco Trench waters and sediments, Earth Planet. Sci. Lett., 28, 337344.
  • Reeburgh, W. S. (1996), “Soft spots” in the global methane budget, in 8th International Symposium on Microbial Growth on C-1 Compounds, edited by M. E. Lidstrom, and F. R. Tabita, pp. 334342, Springer, New York.
  • Reeburgh, W. S. (2003), Global methane biogeochemistry, Treatise Geochem, 4, 6589.
  • Reeburgh, W. S., S. C. Whalen, and M. J. Alperin (1993), The role of methylotrophy in the global methane budget, in Microbial Growth on C-1 Compounds, edited by J. C. Murrell, and D. P. Kelly, pp. 114, Intercept, Andover, U. K.
  • Sahling, H., D. Rickert, R. W. Lee, P. Linke, and E. Suess (2002), Macrofaunal community structure and the sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific, Mar. Ecol. Prog. Ser., 231, 121138.
  • Schmaljohann, R. (1996), Methane dynamics in the sediment and water column of Kiel Harbour (Baltic Sea), Mar. Ecol. Prog. Ser., 131, 263273.
  • Sommer, S., O. Pfannkuche, D. Rickert, and A. Kähler (2002), Ecological implications of surficial marine gas hydrates for the associated small-sized benthic biota at the Hydrate Ridge (Cascadia Convergent Margin, NE Pacific), Mar. Ecol. Prog. Ser., 243, 2538.
  • Sommer, S., E. Gutzmann, W. Ahlrichs, and O. Pfannkuche (2003), Rotifers colonizing sediments with shallow gas hydrates, Naturwissenschaften, 90, 273276.
  • Suess, E., B. Carson, S. D. Ritger, J. C. Moore, M. L. Jones, L. D. Kulm, and G. R. Cochrane (1985), Biological communities at vent sites along the subduction zone off Oregon, Biol. Soc. Wash. Bull., 6, 475484.
  • Suess, E., et al. (1999), Gas hydrate destabilization: Enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin, Earth. Planet. Sci. Lett., 170, 115.
  • Suess, E., et al. (2001), Sea floor methane hydrates at Hydrate Ridge, Cascadia Margin, in Natural Gas Hydrates: Occurrence, Distribution and Detection, Geophys. Monogr. Ser., vol. 124, edited by C. K. Paull, and W. P. Dillon, pp. 8798, AGU, Washington, D. C.
  • Tengberg, A., H. Stahl, G. Gust, V. Müller, U. Arning, H. Anderson, and P. O. J. Hall (2004), Intercalibration of benthic flux chambers: I. Accuracy of flux measurements and influence of chambers hydrodynamics, Prog. Oceanogr., 60, 128.
  • Thomsen, L., and G. Gust (2000), Sediment stability and characteristics of resuspended aggregates of the western European continental margin, Deep Sea Res., Part I, 47, 18811897.
  • Torres, M. E., J. McManus, D. E. Hammond, M. A. de Angelis, K. U. Heeschen, S. L. Colbert, M. D. Tyron, K. M. Brown, and E. Suess (2002), Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate ridge, OR, I: Hydrological provinces, Earth Planet. Sci. Lett., 201, 525540.
  • Treude, T., A. Boetius, K. Knittel, K. Wallmann, and B. B. Jørgensen (2003), Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean, Mar. Ecol. Prog. Ser., 264, 114.
  • Tyron, M. D., K. M. Brown, and M. E. Torres (2002), Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes, Earth Planet. Sci. Lett., 201, 541557.
  • Valentine, D. L. (2002), Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review, Antonie van Leeuwenhoek, 81, 271282.
  • Valentine, D. L., and W. S. Reeburgh (2000), New perspectives on anaerobic methane oxidation, Environ. Microbiol., 2, 477484.
  • Valentine, D. L., D. C. Blanton, W. S. Reeburgh, and M. Kastner (2001), Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin, Geochim. Cosmochim. Acta, 65, 26332640.
  • Van Cappellen, P., and Y. Wang (1996), Cycling of iron and manganese in surface sediments: A general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese, Am. J. Sci., 296, 197243.
  • Witte, U., and O. Pfannkuche (2000), High rates of benthic carbon remineralisation in the abyssal Arabian Sea, Deep Sea Res., Part II, 47, 27852804.