SEARCH

SEARCH BY CITATION

References

  • Andreae, M. O., and P. Merlet (2001), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15(4), 955966.
  • Beringer, J., S. McIlwaine, A. H. Lynch, F. S. Chapin, and G. B. Bonan (2002), The use of a reduced form model to assess the sensitivity of a land surface model to biotic surface parameters, Clim. Dyn., 19, 455466.
  • Campolongo, F., J. Kleijnen, and T. Andres (2000), Screening Methods, in Sensitivity Analysis, edited by A. Saltelli, K. Chan, and E. M. Scott, pp. 6580, John Wiley, Hoboken, N. J.
  • Ciais, P., et al. (1997), A three-dimensional synthesis study of delta O-18 in atmospheric CO2: 1. Surface fluxes, J. Geophys. Res., 102(D5), 58575872.
  • Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, and J. Ni (2001), Measuring net primary production in forests: concepts and field methods, Ecol. Appl., 11(2), 356370.
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell (2000), Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408(6813), 750.
  • Cramer, W., D. W. Kicklighter, A. Bondeau, B. Moore, C. Churkina, B. Nemry, A. Ruimy, and A. L. Schloss (1999), Comparing global models of terrestrial net primary productivity (NPP): Overview and key results, Global Change Biol., 5, 115.
  • Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7, 357373.
  • Daly, C., D. Bachelet, J. M. Lenihan, R. P. Neilson, W. Parton, and D. Ojima (2000), Dynamic simulation of tree-grass interactions for global change studies, Ecol. Appl., 10(2), 449469.
  • Dargaville, R. J., et al. (2002), Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects, Global Biogeochem. Cycles, 16(4), 1092, doi:10.1029/2001GB001426.
  • Dufresne, J. L., P. Friedlingstein, M. Berthelot, L. Bopp, P. Ciais, L. Fairhead, H. Le Treut, and P. Monfray (2002), On the magnitude of positive feedback between future climate change and the carbon cycle, Geophys. Res. Lett., 29(10), 1405, doi:10.1029/2001GL013777.
  • Fang, C., P. Smith, J. Moncrieff, and J. Smith (2005), Similar response of labile and resistant organic matter pools to changes in temperature, Nature, 433, 5758.
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine (1996), An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochem. Cycles, 10(4), 603628.
  • Food and Agriculture Organization of the U.N. (1991), The Digitized Soil Map of the World (Release 1.0), Rome.
  • Friedlingstein, P., J. L. Dufresne, P. M. Cox, and P. Rayner (2003), How positive is the feedback between climate change and the carbon cycle? Tellus, Ser. B, 55(2), 692700.
  • Friend, A. D., A. K. Stevens, R. G. Knox, and M. G. R. Cannell (1997), A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0), Ecol. Modell., 95(2–3), 249287.
  • Gerber, S., F. Joos, and C. Prentice (2004), Sensitivity of a dynamic global vegetation model to climate and atmospheric CO2, Global Change Biol., 10, 12231239.
  • Gerten, D., S. Schaphoff, U. Haberlandt, W. Lucht, and S. Sitch (2004), Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model, J. Hydrol., 286(1–4), 249270.
  • GLOBALVIEW-CO2 (1999), Cooperative Atmospheric Data Integration Project—Carbon Dioxide [CD-ROM], Clim. Monit. and Diag. Lab., Boulder, Colo.
  • Hallgren, W. S., and A. J. Pitman (2000), The uncertainty in simulations by a global biome model (BIOME3) to alternative parameter values, Global Change Biol., 6, 483495.
  • Haxeltine, A., and I. C. Prentice (1996a), BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition amongst plant functional types, Global Biogeochem. Cycles, 10(4), 693709.
  • Haxeltine, A., and I. C. Prentice (1996b), A general model for the light use efficiency of primary production, Funct. Ecol., 10, 551561.
  • Heimann, M., et al. (1998), Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: First results of a model intercomparison study, Global Biogeochem. Cycles, 12(1), 124.
  • Helton, J., and F. Davis (2000), Sampling-based methods, in Sensitivity Analysis, edited by A. Saltelli, K. Chan, and E. M. Scott, pp. 101153, John Wiley, Hoboken, N. J.
  • Houghton, R. A., and D. L. Skole (1990), Carbon-transformation of the global environment, in The Earth as Transformed by Human Action— Global and Regional Changes in the Biosphere Over the Past 300 Years, edited by B. L. Turner et al., pp. 393408, Cambridge Univ. Press, New York.
  • House, J. I., I. C. Prentice, N. Ramankutty, R. A. Houghton, and M. Heimann (2003), Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks, Tellus, Ser. B, 55(2), 345363.
  • Iman, R. L., and W. Conover (1982), A distribution free approach to inducing rank correlation among input variables, Commun. Stat. B, 11, 311334.
  • Intergovernmental Panel on Climate Change (1992), Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, edited by J. T. Houghton, B. A. Callender, and S. K. Varney, Cambridge Univ. Press, New York.
  • Intergovernmental Panel on Climate Change (2001), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., 881 pp., Cambridge Univ. Press, New York.
  • Janssens, I. A., et al. (2001), Productivity overshadows temperature in determining soil and ecosystem respiration across European forests, Global Change Biol., 7(3), 269278.
  • Johns, T. C., R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, and R. A. Wood (1997), The second Hadley Centre coupled ocean-atmosphere GCM: Model description, spinup and validation, Clim. Dyn., 13, 103134.
  • Jones, C. D., P. M. Cox, R. L. H. Essery, D. L. Roberts, and M. J. Woodage (2003), Strong carbon cycle feedbacks in a climate model with interactive CO2 and sulphate aerosols, Geophys. Res. Lett., 30(9), 1479, doi:10.1029/2003GL016867.
  • Joos, F., I. C. Prentice, S. Sitch, R. Meyer, G. Hooss, G. K. Plattner, S. Gerber, and K. Hasselmann (2001), Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios, Global Biogeochem. Cycles, 15(4), 891907.
  • Kaminski, T., M. Heimann, and R. Giering (1999a), A coarse grid three-dimensional global inverse model of the atmospheric transport: 1. Adjoint model and Jacobian matrix, J. Geophys. Res., 104(D15), 18,53518,553.
  • Kaminski, T., M. Heimann, and R. Giering (1999b), A coarse grid three-dimensional global inverse model of the atmospheric transport: 2. Inversion of the transport of CO2 in the 1980s, J. Geophys. Res., 104(D15), 18,55518,581.
  • Kaminski, T., W. Knorr, P. J. Rayner, and M. Heimann (2002), Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle, Global Biogeochem. Cycles, 16(4), 1066, doi:10.1029/2001GB001463.
  • Kicklighter, D. W., et al. (1999), A first-order analysis of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models, Tellus, Ser. B, 51(2), 343366.
  • Kindermann, J., G. Würth, G. Kohlmaier, and F. W. Badeck (1996), Interannual variation of carbon exchange fluxes in terrestrial ecosystems, Global Biogeochem. Cycles, 10(4), 737755.
  • Kleijnen, J. (1998), Experimental design for sensitivity analysis, optimization and validation of simulation models, in Handbook of Simulation—Principles, Methodology, Advances, Applications, and Practice, edited by J. Banks, pp. 173224, John Wiley, Hoboken, N. J.
  • Knorr, W. (2000), Annual and interannual CO2 exchanges of the terrestrial biosphere: Process-based simulations and uncertainties, Global Ecol. Biogeogr., 9, 225252.
  • Knorr, W., and M. Heimann (1995), Impact of drought stress and other factors on seasonal land biosphere co2 exchange studied through an atmospheric tracer transport model, Tellus, Ser. B, 47(4), 471489.
  • Knorr, W., and M. Heimann (2001), Uncertainties in global terrestrial biosphere modeling: 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme, Global Biogeochem. Cycles, 15(1), 207225.
  • Knorr, W., and J. Kattge (2005), Inversion of Terrestrial Ecosystem Parameter Values against Eddy Covariance Measurements by Monte Carlo Sampling, Global Change Biol., in press.
  • Knorr, W., I. C. Prentice, J. House, and E. Holland (2005), Long-term sensitivity of soil carbon turnover to warming, Nature, 433, 298301.
  • Knutti, R., T. F. Stocker, F. Joos, and G.-K. Plattner (2002), Constraints on radiative forcing and future climate change from observations and climate model ensembles, Nature, 416, 719723.
  • Kolari, P., J. Pumpanen, U. Rannik, H. Ilvesniemi, P. Hari, and F. Berninger (2004), Carbon balance of different aged Scots pine forests in Southern Finland, Global Change Biol., 10, 11061119.
  • Maayar, M., D. T. Price, T. A. Black, E. R. Humphreys, and E.-M. Jork (2002), Sensitivity tests of the Integrated Biosphere Simulator to soil and vegetation characteristics in a Pacific coastal coniferous forest, Atmos. Ocean, 40(3), 313332.
  • McGuire, A. D., J. M. Melillo, J. T. Randerson, W. J. Parton, M. Heimann, R. A. Meier, J. S. Clein, D. W. Kicklighter, and W. Sauf (2000), Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon dioxide in high latitudes, Biogeochemistry, 48(1), 91114.
  • McGuire, A. D., et al. (2001), Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 15(1), 183206.
  • McKay, M., R. Beckman, and W. Conover (1979), A comparison of three methods of selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239245.
  • Melillo, J. M., et al. (1995), Vegetation Ecosystem Modeling and Analysis Project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate-change and CO2 doubling, Global Biogeochem. Cycles, 9(4), 407437.
  • Mitchell, J., T. Johns, J. Gregory, and S. Tett (1995), Climate responses to increasing levels of greenhouse gases and sulphate aerosols, Nature, 376, 501504.
  • Mitchell, T. D., T. R. Carter, P. D. Jones, M. Hulme, and M. New (2004), A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100), Work. Pap. 55, 33 pp., Tyndall Cent. for Clim. Change Res., Univ. of East Anglia, Norwich, UK.
  • Ogee, J., P. Peylin, M. Cuntz, T. Bariac, Y. Brunet, P. Berbigier, P. Richard, and P. Ciais (2004), Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with (CO2)-C-13 and (COO)-O-18 data, Global Biogeochem. Cycles, 18(2), GB2019, doi:10.1029/2003GB002166.
  • Post, W. M., A. W. King, and S. D. Wullschleger (1997), Historical variations in terrestrial biospheric carbon storage, Global Biogeochem. Cycles, 11(1), 99109.
  • Prentice, I. C., W. Cramer, S. P. Harrison, R. Leemans, R. A. Monserud, and A. M. Solomon (1992), A global biome model based on plant physiology and dominance, soil properties and climate, J. Biogeogr., 19(2), 117134.
  • Prentice, I. C., M. Heimann, and S. Sitch (2000), The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations, Ecol. Appl., 10(6), 15531573.
  • Prentice, I., G. Farquhar, M. Fasham, M. Goulden, M. Heimann, V. Jaramillo, H. Kheshgi, C. Le Quéré, R. Scholes, and D. Wallace (2001), The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis—Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 183237, Cambridge Univ. Press, New York.
  • Randerson, J., et al. (2002), Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere-atmosphere model, Global Biogeochem. Cycles, 16(3), 1028, doi:10.1029/2001GB001435.
  • Rayner, P. J., M. Scholze, W. Knorr, T. Kaminski, R. Giering, and H. Widmann (2005), Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global Biogeochem. Cycles, 19, GB2026, doi:10.1029/2004GB002254.
  • Reich, P. B., M. B. Walters, and D. S. Ellsworth (1992), Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems, Ecol. Monogr., 62(3), 365392.
  • Reichstein, M., J. Tenhunen, O. Roupsard, J.-M. Ourcival, S. Rambal, F. Miglietta, A. Peresotti, M. Pecchiari, G. Tirone, and R. Valentini (2003), Inverse modeling of season drought effects of canopy CO2/H2O exchange in three Mediterranean ecosystems, J. Geophys. Res., 108(D23), 4726, doi:10.1029/2003JD003430.
  • Saltelli, A., K. Chan, and E. M. Scott (2000), Sensitivity Analysis, edited by V. Barnett, 486 pp., John Wiley, Hoboken, N. J.
  • Schaphoff, S., W. Lucht, D. Gerten, S. Sitch, W. Cramer, and C. Prentice (2005), Terrestrial biosphere carbon storage under alternative climate projections, Clim. Change., in press.
  • Scurlock, J., W. Cramer, R. J. Olson, W. J. Parton, and S. D. Prince (1999), Terrestrial NPP: Toward a consistent data set for global model evaluation, Ecol. Appl., 9(3), 913919.
  • Sitch, S., et al. (2003), Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model, Global Change Biol., 9, 161185.
  • Smith, B., I. C. Prentice, and M. T. Sykes (2001), Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space, Global Ecol. Biogeogr., 10, 621637.
  • Steffen, W. L., W. Cramer, M. Plöchl, and H. Bugmann (1996), Global vegetation models: Incorporating transient changes to structure and composition, J. Veg. Sci., 7, 321328.
  • Still, C. J., J. T. Randerson, and I. Y. Fung (2004), Large-scale plant light-use efficiency inferred from the seasonal cycle of atmospheric CO2, Global Change Biol., 10, 12401252.
  • Thornton, P. E., et al. (2002), Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests, Agric. For. Meteorol., 113(1–4), 185222.
  • Valentini, R., et al. (2000), The Euroflux dataset 2000, in Carbon, Water and Energy Exchanges of European Forests, edited by R. Valentini, pp. 130, Springer, New York.
  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman (1997), Human alteration of the global nitrogen cycle: Sources and consequences, Ecol. Appl., 7(3), 737750.
  • Wang, Y.-P., R. Leuning, H. A. Cleugh, and P. A. Coppin (2001), Parameter estimation in surface exchange models using nonlinear inversion: how many parameters can we estimate and which measurements are most useful? Global Change Biol., 7, 495510.
  • White, A., M. G. R. Cannell, and A. D. Friend (2000a), CO2 stabilization, climate change and the terrestrial carbon sink, Global Change Biol., 6, 817833.
  • White, M. A., P. E. Thornton, S. Running, and R. Nemani (2000b), Parameterization and Sensitivity analysis of the BIOME-BGC Terrestrial Ecosystem Model: Net primary production controls, Earth Interact., 4, 155.
  • Woodward, F. I., T. M. Smith, and W. R. Emanuel (1995), A global land primary productivity and phytogeography model, Global Biogeochem. Cycles, 9(4), 471490.
  • Zobler, L. (1986), A world soil file for global climate modelling, NASA Tech. Memo., 87802, 32 pp.