SEARCH

SEARCH BY CITATION

References

  • Andres, R. J., G. Marland, I. Fung, and E. Matthews (1996), A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990, Global Biogeochem. Cycles, 10, 419429.
  • Baker, D. F. (1999), An inversion method for determining time-dependent surface CO2 fluxes, in Inverse Methods in Global Biogeochemical Cycles, Geophys. Monogr., vol. 114, edited by P. Kasibhatla et al., pp. 279293, AGU, Washington, D. C.
  • Baker, D. F. (2001), Sources and sinks of atmospheric CO2 estimated from batch least squares inversions of CO2 concentration measurements, Ph.D. dissertation, 414 pp., Program in Atmos. and Oceanic Sci., Princeton Univ., Princeton, N. J.
  • Bousquet, P., P. Peylin, P. Ciais, C. Le Quéré, P. Friedlingstein, and P. Tans (2000), Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290, 13421346.
  • Dargaville, R. J., R. M. Law, and F. Pribac (2000), Implications of interannual variability in atmospheric circulation on modeled CO2 concentrations and source estimates, Global Biogeochem. Cycles, 14, 931943.
  • Energy Information Administration (2002), U.S. Department of Energy, Table H.1: World carbon dioxide emissions from the consumption and flaring of fossil fuels, 1980–present, Int. Energy Annu. 2002. (Available at http://www.eia.doe.gov/emeu/iea/tableh1.html).
  • Enting, I. (2002), Inverse Problems in Atmospheric Constituent Transport, Cambridge Univ. Press, New York.
  • Feely, R. A., et al. (2002), Seasonal and interannual variability of CO2 in the equatorial Pacific, Deep Sea Res., Part II, 49, 24432469.
  • GLOBALVIEW-CO2 (2004), Cooperative Atmospheric Data Integration Project—Carbon Dioxide [CD-ROM], Natl. Oceanic and Atmos. Admin., Clim. Modell. and Diag. Lab. (CMDL), Boulder, Colo. (Available via anonymous FTP at ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW).
  • Gurney, K. R. (2004), Towards robust regional estimates of carbon sources and sinks using atmospheric transport models, Ph.D. dissertation, Grad. Degree Program in Ecol., Colo. State Univ., Fort Collins.
  • Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415, 626630.
  • Gurney, K. R., et al. (2003), Transcom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information, Tellus, Ser. B, 55, 555579.
  • Gurney, K. R., et al. (2004), Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks, Global Biogeochem. Cycles, 18, GB1010, doi:10.1029/2003GB002111.
  • Kaminski, T., P. J. Rayner, M. Heimann, and I. G. Enting (2001), On aggregation errors in atmospheric transport inversions, J. Geophys. Res., 106(D5), 47034715.
  • Keeling, C. D., R. B. Barcastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen (1989), A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data, in Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., vol. 55, edited by D. H. Peterson, pp. 165236, AGU, Washington, D. C.
  • Langenfelds, R. L., R. J. Francey, B. C. Pak, L. P. Steele, J. Lloyd, C. M. Trudinger, and C. E. Allison (2002), Interannual growth rate variations of atmospheric CO2 and its 13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning, Global Biogeochem. Cycles, 16(3), 1048, doi:10.1029/2001GB001466.
  • Law, R. M. (1999), CO2 sources from a mass-balance inversion: Sensitivity to the surface constraint, Tellus, Ser. B, 51, 254265.
  • Law, R. M., Y.-H. Chen, K. R. Gurney, and TransCom 3 modelers (2003), TransCom 3 CO2 inversion intercomparison: 2. Sensitivity of annual mean results to data choices, Tellus, Ser. B, 55, 580595.
  • Marland, G., T. A. Boden, and R. J. Andres (2003), Global, regional, and national CO2 emissions, in Trends: A Compendium of Data on Global Change, pp. 505584, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, Tenn. (Available at http://cdiac.esd.ornl.gov/trends/emis/tre_glob.htm).
  • Masarie, K. A., and P. P. Tans (1995), Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record, J. Geophys. Res., 100(D6), 11,59311,610.
  • Murayama, S., S. Taguchi, and K. Higuchi (2004), Interannual variation in the atmospheric CO2 growth rate: Role of atmospheric transport in the Northern Hemisphere, J. Geophys. Res., 109, D02305, doi:10.1029/2003JD003729.
  • Page, S. E., F. Siegert, J. O. Rieley, H. D. V. Boehm, A. Jaya, and S. Limin (2002), The amount of carbon released from peat and forest fires in Indonesia during 1997, Nature, 420, 6165.
  • Peylin, P., D. Baker, J. Sarmiento, P. Ciais, and P. Bousquet (2002), Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data, J. Geophys. Res., 107(D19), 4385, doi:10.1029/2001JD000857.
  • Peylin, P., P. Bousquet, C. Le Quéré, S. Sitch, P. Friedlingstein, G. McKinley, N. Gruber, P. Rayner, and P. Ciais (2005), Multiple constraints on regional CO2 flux variations over land and oceans, Global Biogeochem. Cycles, 19, GB1011, doi:10.1029/2003GB002214.
  • Piper, S. C., C. D. Keeling, M. Heimann, and E. F. Stewart (2001a), Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000: II. A three-dimensional tracer inversion model to deduce regional fluxes, SIO Ref. 01-07, Scripps Inst. of Oceanogr., Univ. of Calif., San Diego, La Jolla.
  • Piper, S. C., C. D. Keeling, and E. F. Stewart (2001b), Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000: III. Sensitivity tests, SIO Ref. 01-08, Scripps Inst. of Oceanogr., Univ. of Calif., San Diego, La Jolla.
  • Prentice, I. C., G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Kheshgi, and C. Le Quéré (2001), The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 183287, Cambridge Univ. Press, New York.
  • Randerson, J. T., M. V. Thompson, T. J. Conway, I. Y. Fung, and C. B. Field (1997), The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide, Global Biogeochem. Cycles, 11, 535560.
  • Rayner, P. J., I. G. Enting, R. J. Francey, and R. L. Langenfelds (1999), Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations, Tellus, Ser. B, 51, 213232.
  • Rödenbeck, C., S. Houweling, M. Gloor, and M. Heimann (2003), CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport, Atmos. Chem. Phys., 3, 19191964.
  • Sokal, R. R., and F. J. Rohlf (1969), Biometry: The Principles and Practice of Statistics in Biological Research, 776 pp., W. H. Freeman, New York.
  • Takahashi, T., R. H. Wanninkhof, R. A. Feely, R. F. Weiss, D. W. Chipman, N. Bates, J. Olafsson, C. Sabine, and S. C. Sutherland (1999), Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference, in Proceedings of the 2nd International Symposium: CO2in the Oceans, the 12th Global Environmental Tsukuba, 18–22 January 1999, Tsukuba Center of Institutes, edited by Y. Nojiri, Natl. Inst. for Environ. Stud., Environ. Agency of Jpn., Tokyo.